Toggle light / dark theme

we will be bringing you extracts from 9 trailblazer profiles from our new Neurotech report – dynamic and innovative companies we feel are driving this exciting space. Each profile includes a flagship product deep dive which offers a forensic consideration of product development, efficacy, target market, channels to market, success factors, IP and funding.

AE was born of the vision to increase human agency for end users through the technology the group develops for their partners and their wholly-owned and operated skunkworks companies. Running a highly collaborative agile process, these efforts are extended by investing heavily in the brain computer interface (BCI) space. BCI represents, to AE, the pinnacle of agency increasing tech with massive implications for users and the whole of humanity.

A study published last week in Molecular Cell took a step towards that radical new concept for CRISPR. Led by Dr. Jennifer Doudna at the University of California Berkeley, who shared a Nobel Prize as a pioneer in the field, the study honed in on Cas9’s less famous and far more enigmatic cousin, Cas12c.

It’s the black sheep of the Cas family. Unlike other members, Cas12c completely lacks the ability to cut DNA. Instead, in bacteria cells, it binds onto invading viruses and protects vulnerable cells without shredding the virus’s DNA. The end result is a powerful antiviral defense system that doesn’t tax the host cell’s inner workings—yet makes it invincible to certain viral infections.

The study shows that chopping up viral DNA isn’t the only route for antiviral defense, at least in bacteria cells, the authors said. But more importantly, we’ve only begun scratching the surface of CRISPR gene editors.

Organic farmers are returning to an unusual tool in the fight against weeds — fire. Called ‘flame weeding’ the process involves either using a small, handheld flamethrower, or installing a pretty hardcore row of flamethrowers onto the front of a tractor and slowly driving through fields of crops singeing the weeds in between the rows.

Flame Engineering, Inc. specializes in developing and selling flame weeding equipment and says the technique is rooted in science. The company’s website explains that the technique is not about blasting the weeds to kingdom come, but rather about focusing on destroying cell structure.

“Flame weeding is what we like to call a ‘slow kill.’ Essentially, you are destroying cell structure in the plant leaf. The weed will no longer put energy toward growth (photosynthesis) taking the kill through the root system. YES, flame weeding will kill the roots too! Even on big weeds (over 6″), you will see a stunning effect and even a kill within a few days, depending on how established the root system is and how long the plant was exposed to heat.”

As people across the globe look forward to longer life expectancies, malignant cancers continue to pose threats to human health. The exploration and development of immunotherapy aims to seek new breakthroughs for the treatment of solid tumors.

The successful establishment of anti-tumor immunity requires the activation, expansion and differentiation of antigen-specific lymphocytes. This process largely depends on specific interactions between various T cells and antigen-presenting cells (APCs) in the body. However, existing tumor vaccines, such as neoantigen vaccines and various vector vaccines, all rely on random interactions with APCs in the body. Furthermore, inappropriate interactions may lead to the silencing of other immune responses.

Although immune checkpoint-based immunotherapy has been shown to have great potential, only a small proportion of patients fully respond to this therapy, and the relevant molecular mechanisms need to be further explored. This delivery method is however complex and inefficient.

Neoadjuvant chemotherapy and radiation followed by surgical resection of the rectum is a standard treatment for locally advanced rectal cancer. A subset of rectal cancer is caused by a deficiency in mismatch repair. Because mismatch repair–deficient colorectal cancer is responsive to programmed death 1 (PD-1) blockade in the context of metastatic disease, it was hypothesized that checkpoint blockade could be effective in patients with mismatch repair–deficient, locally advanced rectal cancer.

We initiated a prospective phase 2 study in which single-agent dostarlimab, an anti–PD-1 monoclonal antibody, was administered every 3 weeks for 6 months in patients with mismatch repair–deficient stage II or III rectal adenocarcinoma. This treatment was to be followed by standard chemoradiotherapy and surgery. Patients who had a clinical complete response after completion of dostarlimab therapy would proceed without chemoradiotherapy and surgery. The primary end points are sustained clinical complete response 12 months after completion of dostarlimab therapy or pathological complete response after completion of dostarlimab therapy with or without chemoradiotherapy and overall response to neoadjuvant dostarlimab therapy with or without chemoradiotherapy.

A total of 12 patients have completed treatment with dostarlimab and have undergone at least 6 months of follow-up. All 12 patients (100%; 95% confidence interval, 74 to 100) had a clinical complete response, with no evidence of tumor on magnetic resonance imaging, 18 F-fluorodeoxyglucose–positron-emission tomography, endoscopic evaluation, digital rectal examination, or biopsy. At the time of this report, no patients had received chemoradiotherapy or undergone surgery, and no cases of progression or recurrence had been reported during follow-up (range, 6 to 25 months). No adverse events of grade 3 or higher have been reported.

The first exascale computer has officially arrived.

The world’s fastest supercomputer performed more than a quintillion calculations per second, entering the realm of exascale computing. That’s according to a ranking of the world’s speediest supercomputers called the TOP500, announced on May 30. The computer, known as Frontier, is the first exascale computer to be included on the biannual list.

Researchers at Meta Reality Labs are reporting that their work on Codec Avatars 2.0 has reached a level where the avatars are approaching complete realism. The researchers created a prototype Virtual Reality headset that has a custom-built accelerator chip specifically designed to manage the AI processing capable of rendering Meta’s photorealistic Codec Avatars on standalone virtual reality headsets.

The prototype Virtual Reality avatars use very advanced machine learning techniques.

Meta first showcased the work on the sophisticated Codec Avatars far back in March 2019. The avatars are powered using multiple neural networks and are generated via a special capture rig that contains 171 cameras. After the avatars are generated, they are powered in real-time through a prototype virtual reality headset that has five cameras. Two cameras are internal viewing each eye while three are external viewing the lower face. It is though that such advanced and photoreal avatars may one day replace video conferencing.

After nine years working at NASA Jet Propulsion Laboratory, Oliver Toupet is developing cutting-edge AI algorithms that enable the self-driving zoox vehicle to understand and make decisions based on its surroundings, and to optimize trajectories to reach its destination safely and comfortably.

Learn why he says the work he’s doing at Zoox is, in some ways, more challenging than his previous work.


Zoox principal software engineer Olivier Toupet on company’s autonomous robotaxi technology.

As far as data security is concerned, there is an even greater danger than remote cyberattacks: namely tampering with hardware that can be used to read out information—such as credit card data from a card reader. Researchers in Bochum have developed a new method to detect such manipulations. They monitor the systems with radio waves that react to the slightest changes in the ambient conditions. Unlike conventional methods, they can thus protect entire systems, not just individual components—and they can do it at a lower cost. The RUB’s science magazine Rubin features a report by the team from Ruhr-Universität Bochum (RUB), the Max Planck Institute for Security and Privacy and the IT company PHYSEC.

Paul Staat and Johannes Tobisch presented their findings at the IEEE Symposium on Security and Privacy, which took place in the U.S. from 23 to 25 May 2022. Both researchers are doing their Ph.D.s at RUB and conducting research at the Max Planck Institute for Security and Privacy in Bochum in Professor Christof Paar’s team. For their research, they are cooperating with Dr. Christian Zenger from the RUB spin-off company PHYSEC.