Toggle light / dark theme

Very thin wires made of a topological insulator could enable highly stable qubits, the building blocks of future quantum computers. Scientists see a new result in topological insulator devices as an important step towards realizing the technology’s potential.

An international group of scientists have demonstrated that wires more than 100 times thinner than a can act like a quantum one-way street for electrons when made of a peculiar material known as a .

The discovery opens the pathway for new technological applications of devices made from topological insulators and demonstrates a significant step on the road to achieving so-called topological qubits, which it has been predicted can robustly encode information for a quantum computer.

Scientists have grown plants in soil from the Moon, a first in human history and a milestone in lunar and space exploration.

In a new paper published in the journal Communications Biology, University of Florida researchers showed that plants can successfully sprout and grow in lunar . Their study also investigated how plants respond biologically to the Moon’s soil, also known as , which is radically different from soil found on Earth.

This work is a first step toward one day growing plants for food and oxygen on the Moon or during . More immediately, this research comes as the Artemis Program plans to return humans to the Moon.

Researchers have used a widespread species of blue-green algae to power a microprocessor continuously for a year—and counting—using nothing but ambient light and water. Their system has potential as a reliable and renewable way to power small devices.

The system, comparable in size to an AA battery, contains a type of non-toxic algae called Synechocystis that naturally harvests energy from the sun through photosynthesis. The tiny electrical current this generates then interacts with an aluminum electrode and is used to power a microprocessor.

The system is made of common, inexpensive and largely . This means it could easily be replicated hundreds of thousands of times to power large numbers of small devices as part of the Internet of Things. The researchers say it is likely to be most useful in off-grid situations or , where small amounts of power can be very beneficial.