This Article Is Based On The Research Paper ‘GraphWorld: Fake Graphs Bring Real Insights for GNNs’. All Credit For This Research Goes To The Researchers 👏👏👏 Please Don’t Forget To Join Our ML Subreddit A graph is a structure consisting of a set of items in which some pairings of the objects are in some […].
Roger Jones, a physicist working at the Large Hadron Collider (LHC) at Cern, explains how the standard model of particle physics may be broken.
Researchers have developed a new kind of logic gate, the fundamental building block from which computers are made. Depending on the kind of logic gate and its rules, two inputs of any combination of 0 and 1 result in an output of either a 1 or 0. A single chip used in creating electronic components like processors and memory modules can contain billions of logic gates.
The newly developed logic gate, which demonstrates the viability of “lightwave electronics,” works orders of magnitudes faster than traditional logic gates. Ordinary logic gates have an input processing delay on the order of nanoseconds, but the new logic gates process inputs in only femtoseconds, a million times shorter than nanoseconds.
The new gates comprise two gold electrodes connected with a graphene wire, which is then zapped with laser pulses, adjusting the pulse’s phase to produce outputs of either a one or a 0. The shortened processing time for the new logic gates means that computers built on the technology would have their processing speeds measured on Petahertz (PHz) scale compared to the current Gigahertz (GHz).
Supernovas might spell the end for the star they happen to, but they aren’t only destructive phenomena. When a star approaches the end of its life and runs out of fuel, it explodes in an enormous outpouring of energy, leaving behind a small, dense core that becomes a black hole or a neutron star. This explosion, though destructive on an epic scale, can also leave behind a beautiful remnant created by the explosion’s shock wave.
A image recently released by the Hubble Space Telescope team shows one such supernova remnant, called DEM L249. Captured by Hubble’s Wide Field Camera 3 instrument and located in the constellation of Mensa, this delicate structure is formed from dust and gas ejected outward from the star’s location by the force of the blast.
“This object — known as DEM L249 — is thought to have been created by a Type 1a supernova during the death throes of a white dwarf,” the Hubble scientists write. “While white dwarfs are usually stable, they can slowly accrue matter if they are part of a binary star system. This accretion of matter continues until the white dwarf reaches a critical mass and undergoes a catastrophic supernova explosion, ejecting a vast amount of material into space in the process.”
A doctor in India is planning to transplant a womb into a transgender woman, possibly enabling her to carry children, a report says.
New Delhi-based surgeon Dr Narendra Kaushik plans to perform the surgery at his clinic using a donated organ from a living or dead donor, according to The Mirror.
“Every transgender woman wants to be as female as possible,” Kaushik told the paper.
While Insight may soon go offline, Mars decided to give it at least one last show, jolting the craft with a 5.0 magnitude marsquake.
Latest updates on Starship design — and a lot of stuff that still needs to improve.
Today we’re going inside Starbase with the ultimate tour guide, Elon Musk. He’s going to take us through the High Bay to see where Starships are assembled, we’ll also see the new MegaBay under construction and talk about SpaceX’s plans to get this rocket flying.
Recommended videos to help with some context [Playlist] — https://youtube.com/playlist?list=PLWzKfs3icbT55w6f9wGqXkhk_SlanIhnr.
Water scarcity is a growing problem around the world. Desalination of seawater is an established method to produce drinkable water but comes with huge energy costs. For the first time, researchers use fluorine-based nanostructures to successfully filter salt from water. Compared to current desalination methods, these fluorous nanochannels work faster, require less pressure and less energy, and are a more effective filter.
If you’ve ever cooked with a nonstick Teflon-coated frying pan, then you’ve probably seen the way that wet ingredients slide around it easily. This happens because the key component of Teflon is fluorine, a lightweight element that is naturally water repelling, or hydrophobic. Teflon can also be used to line pipes to improve the flow of water. Such behavior caught the attention of Associate Professor Yoshimitsu Itoh from the Department of Chemistry and Biotechnology at the University of Tokyo and his team. It inspired them to explore how pipes or channels made from fluorine might operate on a very different scale, the nanoscale.
“We were curious to see how effective a fluorous nanochannel might be at selectively filtering different compounds, in particular, water and salt. And, after running some complex computer simulations, we decided it was worth the time and effort to create a working sample,” said Itoh. “There are two main ways to desalinate water currently: thermally, using heat to evaporate seawater so it condenses as pure water, or by reverse osmosis, which uses pressure to force water through a membrane that blocks salt. Both methods require a lot of energy, but our tests suggest fluorous nanochannels require little energy, and have other benefits too.”
To subscribe to Brian’s YouTube Channel, just click here 👉
Wouldn’t it be cool to have a little black hole in your office? You know, maybe as a trash bin. Or to move around the furniture. Or just as a kind of nerdy gimmick. Why can we not make black holes? Or can we? If we could, what could we do with them? And what’s a black hole laser? That’s what we’ll talk about today.
The Press and Teukolsky paper about the black hole bomb is here:
https://www.nature.com/articles/238211a0
The paper about black hole lasers by Corey and Jacobson is here:
There have appeared many new scientific discoveries since that time, and many of them shake the foundations of the famous theory. It’s full of gaps and unanswered questions. So doesn’t this mean it’s not that perfect?
In this video, I’ll tell you: how many dimensions can the Universe have? What if the world was made of liquid? And most importantly, you’ll find out why the Big Bang theory can be wrong.