Menu

Blog

Page 5214

Apr 3, 2022

Hubble smashes record for most distant star ever seen

Posted by in category: cosmology

The Hubble Space Telescope has smashed a record, identifying its most distant star ever. The star is so far away that its light has taken nearly 13 billion years to reach us, meaning it is from the first one billion years after the Big Bang.

Hubble’s previous record for farthest star observed, set in 2018, was for a star from 4 billion years after the Big Bang. So this new finding is a considerable step older and was only observable thanks to a fortuitous cosmic alignment. “We almost didn’t believe it at first, it was so much farther than the previous most distant, highest redshift star,” said astronomer Brian Welch of the Johns Hopkins University in Baltimore, lead author of the paper, in a statement.

The star in question, named Earendel, which means “morning star” in Old English, is massive, coming in at at least 50 times the mass of our sun. It is also millions of times brighter. However, even allowing for its mass and brightness, it is so far away that it was only possible to observe it thanks to a huge galaxy cluster that passed between it and us. The cluster’s gravity is so large that it warps the light coming from the star and acts as a magnifying class.

Apr 3, 2022

When the Magellanic Cloud galaxies get close, star formation peaks

Posted by in category: space

Like two great songwriters working side by side and inspiring each other to create their best work, the Magellanic Clouds spawn new stars every time the two galaxies meet.

Visible to the naked eye but best seen from the Southern Hemisphere, the Large and Small Magellanic Clouds are by far the most luminous of the many galaxies orbiting the Milky Way. New observations reveal that on multiple occasions the two bright galaxies have minted a rash of stars simultaneously, researchers report March 25 in Monthly Notices of the Royal Astronomical Society: Letters.

Astronomer Pol Massana at the University of Surrey in England and his colleagues examined the Small Magellanic Cloud. Five peaks in the galaxy’s star formation rate — at 3 billion, 2 billion, 1.1 billion and 450 million years ago and at present — match similarly timed peaks in the Large Magellanic Cloud. That’s a sign that one galaxy triggers star formation in the other whenever the two dance close together.

Apr 2, 2022

Retrotechtacular: The Transatlantic Radiotelephone System Of The 1930s

Posted by in categories: business, energy, internet

With the web of undersea cables lacing the continents together now, it’s hard to imagine that it wasn’t until 1956 that the first transatlantic telephone cable was laid. Sure, there were telegraph cables under the Atlantic starting as early as the late 1800s, but getting your voice across the ocean on copper was a long time coming. So what was the discerning 1930s gentleman of business to do when only a voice call would do? He’d have used a radiotelephone, probably at an outrageous expense, which as this video on the receiving end of the New York to London radio connection shows, was probably entirely justified.

The video details the shortwave radiotelephone system that linked New York and London in the 1930s. It starts with a brief but thorough explanation of ionospheric refraction, and how that atmospheric phenomenon makes it possible to communicate over vast distances. It also offers a great explanation on the problems inherent with radio connections, like multipath interference and the dependency on the solar cycle for usable skip. To overcome these issues, the Cooling Radio Station was built, and its construction is the main thrust of the video.

Continue reading “Retrotechtacular: The Transatlantic Radiotelephone System Of The 1930s” »

Apr 2, 2022

Using steampunk to explain quantum physics

Posted by in categories: computing, environmental, quantum physics

What do quantum computers have to do with smog-filled London streets, flying submarines, waistcoats, petticoats, Sherlock Holmesian mysteries, and brass goggles?

A whole lot, according to Nicole Yunger Halpern. Last week, the joined Jacob Barandes, co-director of graduate studies for physics, to discuss her new book, “Quantum Steampunk: The Physics of Yesterday’s Tomorrow.” In it, Yunger Halpern dissects a new branch of science—quantum thermodynamics, or quantum steampunk as she calls it—by fusing steampunk fiction with nonfiction and Victorian-era thermodynamics (the heat and energy that gets pumping) with . Yunger Halpern presents a whimsical lens through which readers can watch a “scientific revolution that’s happening in real time,” Barandes said, exploring mysteries even Holmes couldn’t hope to solve, such as why time flows in only one direction.

“This fusion of old and new creates a wonderful sense of nostalgia and adventure, romance and exploration,” Yunger Halpern said during a virtual Harvard Science Book Talk presented by the University’s Division of Science, Cabot Science Library, and Harvard Book Store. In steampunk, she continued, “fans dress up in costumes full of top hats and goggles and gears and gather at conventions. What they dream, I have the immense privilege of having the opportunity to live.”

Apr 2, 2022

Chemical-to-mechanical molecular computation using DNA-based motors with onboard logic

Posted by in categories: biotech/medical, chemistry

Current DNA computation techniques are slow in generating chemical outputs in response to chemical inputs and rely heavily on fluorescence readouts. Here, the authors introduce a new paradigm for DNA computation where the chemical input is processed and transduced into a mechanical output in the form of macroscopic locomotion using dynamic DNA-based motors.

Apr 2, 2022

Starship orbital launch date could happen in May 2022, Elon Musk reveals

Posted by in categories: Elon Musk, space travel

https://youtube.com/watch?v=-Oox2w5sMcA

Provided an FAA environmental review wraps up by then.


The SpaceX boss provided a recent update on the long-anticipated first orbital launch for his Mars-bound Starship rocket.

Apr 2, 2022

Relativity’s time dilation may limit the quantum world

Posted by in category: quantum physics

A new theoretical paper has tackled the phenomenon of quantum decoherence.


A new theoretical paper has tackled the phenomenon of quantum decoherence, the process by which objects slip out of the quantum world and start behaving classically. The paper approaches this in a new way by applying an effect of general relativity to decoherence. The paper claims that gravity is the key to the disparity between the weird quantum world and the everyday, familiar world of human-sized objects in which we live.

Schrödinger’s cat is an example of a quantum system which might decohere due to time dilation — and myriad other interactions.

Apr 2, 2022

Tesla vehicle production and delivery numbers are out — Here’s how they did in the first quarter

Posted by in category: transportation

Tesla released production numbers for the first quarter after a record-setting close to 2021.

Apr 2, 2022

How China Made An Exascale Supercomputer Out Of Old 14 Nanometer Tech

Posted by in categories: robotics/AI, supercomputing

If you need any proof that it doesn’t take the most advanced chip manufacturing processes to create an exascale-class supercomputer, you need look no further than the Sunway “OceanLight” system housed at the National Supercomputing Center in Wuxi, China.

Some of the architectural details of the OceanLight supercomputer came to our attention as part of a paper published by Alibaba Group, Tsinghua University, DAMO Academy, Zhejiang Lab, and Beijing Academy of Artificial Intelligence, which is running a pretrained machine learning model called BaGuaLu, across more than 37 million cores and 14.5 trillion parameters (presumably with FP32 single precision), and has the capability to scale to 174 trillion parameters (and approaching what is called “brain-scale” where the number of parameters starts approaching the number of synapses in the human brain). But, as it turns out, some of these architectural details were hinted at in the three of the six nominations for the Gordon Bell Prize last fall, which we covered here. To our chagrin and embarrassment, we did not dive into the details of the architecture at the time (we had not seen that they had been revealed), and the BaGuaLu paper gives us a chance to circle back.

Before this slew of papers were announced with details on the new Sunway many-core processor, we did take a stab at figuring out how the National Research Center of Parallel Computer Engineering and Technology (known as NRCPC) might build an exascale system, scaling up from the SW26010 processor used in the Sunway “TaihuLight” machine that took the world by storm back in June 2016. The 260-core SW26010 processor was etched by Chinese foundry Semiconductor Manufacturing International Corporation using 28 nanometer processes – not exactly cutting edge. And the SW26010-Pro processor, etched using 14 nanometer processes, is not on an advanced node, but China is perfectly happy to burn a lot of coal to power and cool the OceanLight kicker system based on it. (Also known as the Sunway exascale system or the New Generation Sunway supercomputer.)

Apr 2, 2022

Google to build more efficient, multi-capability AI systems

Posted by in category: robotics/AI

Architecture may make it possible to train one machine-learning model that performs all sorts of tasks.