Menu

Blog

Page 5196

Sep 22, 2021

FedEx, Aurora to launch autonomous-truck routes in Texas

Posted by in categories: robotics/AI, transportation

FedEx Corp. and self-driving vehicle startup Aurora Innovation Inc. are launching a pilot program for autonomous-truck shipments between Dallas and Houston, with the companies announcing Wednesday what they called a first-of-its-kind partnership involving the two companies and a truck maker.

“This is an exciting, industry-first collaboration that will work toward enhancing the logistics industry through safer, more efficient transportation of goods,” said Rebecca Yeung, vice president of advanced technology and innovation at FedEx FDX,-9.12% 0 in a news release.

Sep 22, 2021

Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity

Posted by in categories: biotech/medical, neuroscience

Cancer heterogeneity impacts therapeutic response, driving efforts to discover over-arching rules that supersede variability. Here, we define pan-cancer binary classes based on distinct expression of YAP and YAP-responsive adhesion regulators. Combining informatics with in vivo and in vitro gain-and loss-of-function studies across multiple murine and human tumor types, we show that opposite pro-or anti-cancer YAP activity functionally defines binary YAPon or YAPoff cancer classes that express or silence YAP, respectively. YAPoff solid cancers are neural/neuroendocrine and frequently RB1−/−, such as retinoblastoma, small cell lung cancer, and neuroendocrine prostate cancer. YAP silencing is intrinsic to the cell of origin, or acquired with lineage switching and drug resistance. The binary cancer groups exhibit distinct YAP-dependent adhesive behavior and pharmaceutical vulnerabilities, underscoring clinical relevance. Mechanistically, distinct YAP/TEAD enhancers in YAPoff or YAPon cancers deploy anti-cancer integrin or pro-cancer proliferative programs, respectively. YAP is thus pivotal across cancer, but in opposite ways, with therapeutic implications.


Pearson et al. demonstrate that YAP/TAZ, well-known oncogenes, are tumor suppressors in a large group of cancers. Pan-cancer analyses reveal that opposite YAP/TAZ expression, adhesive behavior, and oncogenic versus tumor suppressor YAP/TAZ activity functionally stratify binary cancer classes, which interchange to drive drug resistance. Contrasting YAPoff/YAPon classes exhibit unique vulnerabilities, facilitating therapeutic selection.

Sep 22, 2021

A Warning Sign of a Mass Extinction Event Is on the Rise, Scientists Say

Posted by in category: existential risks

Toxic microbial blooms thrived during the Great Dying, the most severe extinction in Earth’s history, and they are proliferating again due to human activity.

Sep 22, 2021

Covid therapy from llamas shows promise

Posted by in category: biotech/medical

Covid: Immune therapy from llamas shows promise.


An immune therapy derived from llama blood shows “exciting potential” in early coronavirus trials.

Sep 22, 2021

Nuclear waste interaction in the environment may be more complicated than once thought

Posted by in categories: chemistry, nuclear energy

Past and present nuclear activities (energy, research, weapon tests) have increased the urgency to understand the behavior of radioactive materials in the environment. Nuclear wastes containing actinides (e.g. plutonium, americium, curium, neptunium…) are particularly problematic as they remain radioactive and toxic for thousands of years.


Lawrence Livermore National Laboratory (LLNL) scientists and collaborators proposed a new mechanism by which nuclear waste could spread in the environment.

The new findings, that involve researchers at Penn State and Harvard Medical School, have implications for nuclear waste management and environmental chemistry. The research is published in the Journal of the American Chemical Society.

Continue reading “Nuclear waste interaction in the environment may be more complicated than once thought” »

Sep 22, 2021

Scientists find a new way to reverse immune suppression in tumors

Posted by in category: biotech/medical

These club cell-secreted factors are able to nullify immune suppressor cells that otherwise help tumors escape an effective antitumor response,” said co-senior author Dr. Vivek Mittal, director of research at the Neuberger Berman Lung Cancer Center and the Ford-Isom Research Professor of Cardiothoracic Surgery at Weill Cornell Medicine. “We’re excited by the possibility of developing these club cell factors into a cancer treatment.


Malignant tumors can enhance their ability to survive and spread by suppressing antitumor immune cells in their vicinity, but a study led by researchers at Weill Cornell Medicine and NewYork-Presbyterian has uncovered a new way to counter this immunosuppressive effect.

In the study, published Sept. 20 in Nature Cancer, the researchers identified a set of anti-immunosuppressive factors that can be secreted by called cells that line airways in the lungs. They showed in a mouse model of lung cancer that these club cell factors inhibit highly potent immunosuppressive cells called myeloid-derived suppressor cells (MDSCs), which tumors often recruit to help them evade antitumor immune responses.

Continue reading “Scientists find a new way to reverse immune suppression in tumors” »

Sep 22, 2021

A genetic brain disease reversed after birth

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

As this is the first report of neuro-inflammation in Kleefstra syndrome, the next step is to find out if it also occurs in the human condition. Shinkai believes the chances are high and says he would not be surprised if other neurological diseases caused by epigenetic dysregulation were also related to abnormal inflammation in the brain.


Researchers at the RIKEN Cluster for Pioneering Research (CPR) in Japan report that Kleefstra syndrome, a genetic disorder that leads to intellectual disability, can be reversed after birth in a mouse model of the disease. Published in the scientific journal iScience, the series of experiments led by Yoichi Shinkai showed that postnatal treatment resulted in improved symptoms, both in the brain and in behavior.

Normally, we get two good copies of most genes, one from each parent. In Kleefstra , one copy of the EHMT1 gene is mutated or missing. This leads to half the normal amount of GLP, a protein whose job is to control genes related to brain development through a process called H3K9 methylation. Without enough GLP, H3K9 methylation is also reduced, and the connections between neurons in the brain do not develop normally. The result is and autistic-like symptoms. “We still don’t know if Kleefstra syndrome is a curable disease after birth or how this epigenetic dysregulation leads to the ,” says Shinkai. “Our studies in have provided new information about what causes the behavioral abnormalities associated with the syndrome and have shown that a cure is a real possibility in the future.”

Continue reading “A genetic brain disease reversed after birth” »

Sep 22, 2021

Do Microbes Make Us Social?

Posted by in categories: biological, evolution, genetics, neuroscience

Microbes may have influenced the evolution of the social brain and behavior as a means to propagate their own genetic material.

—Cryan, Dinan, et al., November 2,019 Science.


In an effort to extend their territory, microbes may push us to socialize.

Sep 22, 2021

Government Scientists Are Creating Matter From Pure Light

Posted by in category: government

Scientists at Brookhaven National Laboratory turned light into electrons, validating a theory that dates back nearly a century.

Sep 22, 2021

Pioneering and Highly Accurate Approach to Clocking Electron Movements Inside an Atom

Posted by in category: particle physics

New technique delivers resolution improvement in ultrafast processes.

An international consortium of scientists, initiated by Reinhard Kienberger, Professor of Laser and X-ray Physics at the Technical University of Munich (TUM), several years ago, has made significant measurements in the femtosecond range at the U.S. Stanford Linear Accelerator Center (SLAC).

However, on these minuscule timescales, it is extremely difficult to synchronize the X-ray pulse that sparks a reaction in the sample on the one hand and the laser pulse which ‘observes’ it on the other. This problem is called timing jitter, and it is a major hurdle in ongoing efforts to perform time-resolved experiments at XFELs with ever-shorter resolution.