Toggle light / dark theme

Photosynthesis has evolved in plants for millions of years to turn water, carbon dioxide, and the energy from sunlight into plant biomass and the foods we eat. This process, however, is very inefficient, with only about 1% of the energy found in sunlight ending up in the plant. Scientists at UC Riverside and the University of Delaware have found a way to bypass the need for biological photosynthesis altogether and create food independent of sunlight by using artificial photosynthesis.

The research, published in Nature Food, uses a two-step electrocatalytic process to convert , electricity, and water into acetate, the form of the main component of vinegar. Food-producing organisms then consume acetate in the dark to grow. Combined with to generate the electricity to power the electrocatalysis, this hybrid organic-inorganic system could increase the conversion efficiency of sunlight into , up to 18 times more efficient for some foods.

“With our approach we sought to identify a new way of producing food that could break through the limits normally imposed by biological photosynthesis,” said corresponding author Robert Jinkerson, a UC Riverside assistant professor of chemical and environmental engineering.

Ever considered the notion that everything around you was cooked up by aliens in a lab? Theoretical physicist and former chair of Harvard’s astronomy department, Abraham ‘Avi’ Loeb, has proposed a wild – if unsettling – theory that our universe was intentionally created by a more advanced class of lifeform.

In an op-ed for Scientific American, “Was Our Universe Created In A Laboratory?”, Loeb suggested that aliens could have created a ‘baby universe’ using ‘quantum tunneling’, which would explain our universe’s ‘flat geometry’ with zero net energy. If this discovery were proven true, then the universe humans live in would be shown to be “like a biological system that maintains the longevity of its genetic material through multiple generations,” Loeb wrote.

Loeb put forward the idea of a scale of developed civilisations (A, B, etc.) and, due to that fact that on Earth we currently don’t have the ability to reproduce the astrophysical conditions that led to our existence, “we are a low-level technological civilisation, graded class C on the cosmic scale” (essentially: dumb). We would be higher up, he added, if we possessed the ability to recreate the habitable conditions on our planet for when the sun will die. But, due to our tendency to “carelessly destroy the natural habitat” on Earth through climate change, we should really be downgraded to class D.

The ever-increasing production and use of plastics over the last half century has created a huge environmental problem for the world. Currently, most of the 4.9 billion tonnes of plastics ever produced will end up in landfills or the natural environment, and this number is expected to increase to around 12 billion tonnes by 2050.

In collaboration with colleagues at universities and institutions in the UK, China and the Kingdom of Saudi Arabia, researchers in the Edwards/ Xiao group at Oxford’s Department of Chemistry have developed a method of converting plastic waste into hydrogen gas which can be used as a clean fuel, and high-value solid carbon. This was achieved with a new type of catalysis developed by the group which uses microwaves to activate catalyst particles to effectively ‘strip’ hydrogen from polymers.

The findings, published in Nature Catalysis, detail how the researchers mixed mechanically-pulverised plastic particles with a microwave-susceptor catalyst of iron oxide and aluminium oxide. The mixture was subjected to microwave treatment and yielded a large volume of hydrogen gas and a residue of carbonaceous materials, the bulk of which were identified as carbon nanotubes.

😳!!!!


Researchers have just discovered a previously unknown process that makes sense of the ‘secret decisions’ plants make when releasing carbon back into the atmosphere.

“We found that plants control their respiration in a way we did not expect, they control how much of the carbon from photosynthesis they keep to build biomass by using a metabolic channel,” University of Western Australia plant biochemist Harvey Millar told ScienceAlert.

“This happens right as the step before they decide to burn a compound called pyruvate to make and release CO2 back to the atmosphere.”

The corals we find in the world’s reefs have their own microbiomes, and scientists are figuring out how to feed them probiotic ‘supplements’ – to try and save them for future generations.

A baby coral begins life as a swimming larva adrift in the ocean. When it is big enough, the larva sinks and secures itself to the seafloor – or, if it’s lucky, a healthy reef. Once settled, it begins to clone itself.

Shallow-water corals, made up of myriad different organisms, are essentially colonies of tiny animals collaborating with a marine algae called zooxanthellae, which feeds the coral and helps produce the calcium carbonate that forms reefs over thousands – or even millions – of years.

A $14.95 smart lamp from Ikea apparently has enough computing power to run the classic PC game Doom.

A software engineer named Nicola Wrachien removed the smart lamp’s computer chip and used it to build a miniaturized Doom gaming system. Over the weekend, he uploaded a video to YouTube, showing his creation in action.

The system runs a downsized version of Doom that requires less RAM. The chip from the Ikea lamp has enough processing power to play the game at 35 frames per second over a cheap 160-by-128-pixel display.

WASHINGTON — Artificial intelligence and related digital tools can help warn of natural disasters, combat global warming and fast-track humanitarian aid, according to retired Army Lt. Gen. H.R. McMaster, a onetime Trump administration national security adviser.

It can also help preempt fights, highlight incoming attacks and expose weaknesses the world over, he said May 17 at the Nexus 22 symposium.

The U.S. must “identify aggression early to deter it,” McMaster told attendees of the daylong event focused on autonomy, AI and the defense policy that underpins it. “This applies to our inability to deter conflict in Ukraine, but also the need to deter conflict in other areas, like Taiwan. And, of course, we have to be able to respond to it quickly and to maintain situational understanding, identify patterns of adversary and enemy activity, and perhaps more importantly, to anticipate pattern breaks.”

Researchers have identified the best silicon and silicon dioxide materials for the next generation of transistors, which are expected to be just a nanometer long.


North Carolina State University researchers found they could filter carbon dioxide from air and gas mixtures at promising rates using a proposed new textile-based filter that combines cotton fabric and an enzyme called carbonic anhydrase—one of nature’s tools for speeding chemical reactions.

Circa 2020 Immortality of the heart and heart regeneration.


Cardiovascular diseases represent the major cause of morbidity and mortality worldwide. Multiple studies have been conducted so far in order to develop treatments able to prevent the progression of these pathologies. Despite progress made in the last decade, current therapies are still hampered by poor translation into actual clinical applications. The major drawback of such strategies is represented by the limited regenerative capacity of the cardiac tissue. Indeed, after an ischaemic insult, the formation of fibrotic scar takes place, interfering with mechanical and electrical functions of the heart. Hence, the ability of the heart to recover after ischaemic injury depends on several molecular and cellular pathways, and the imbalance between them results into adverse remodeling, culminating in heart failure. In this complex scenario, a new chapter of regenerative medicine has been opened over the past 20 years with the discovery of induced pluripotent stem cells (iPSCs). These cells share the same characteristic of embryonic stem cells (ESCs), but are generated from patient-specific somatic cells, overcoming the ethical limitations related to ESC use and providing an autologous source of human cells. Similarly to ESCs, iPSCs are able to efficiently differentiate into cardiomyocytes (CMs), and thus hold a real regenerative potential for future clinical applications. However, cell-based therapies are subjected to poor grafting and may cause adverse effects in the failing heart. Thus, over the last years, bioengineering technologies focused their attention on the improvement of both survival and functionality of iPSC-derived CMs. The combination of these two fields of study has burst the development of cell-based three-dimensional (3D) structures and organoids which mimic, more realistically, the in vivo cell behavior. Toward the same path, the possibility to directly induce conversion of fibroblasts into CMs has recently emerged as a promising area for in situ cardiac regeneration. In this review we provide an up-to-date overview of the latest advancements in the application of pluripotent stem cells and tissue-engineering for therapeutically relevant cardiac regenerative approaches, aiming to highlight outcomes, limitations and future perspectives for their clinical translation.

Cardiovascular diseases represent the major cause of morbidity and mortality worldwide, accounting for 31% of all deaths (Organization WH 2016). Myocardial infarction (MI) is associated with necrosis of the cardiac tissue due to the occlusion of the coronary arteries, a condition that irrevocably diminishes oxygen and nutrient delivery to the heart (Thygesen et al., 2007). While effective therapies, including surgical approaches, are currently used to treat numerous cardiac disorders, such as valvular or artery diseases, available therapeutic treatments for the damaged myocardium are still very limited and poorly effective. Furthermore, after an ischaemic insult, the formation of fibrotic scar takes place, interfering with mechanical and electrical functions of the cardiac tissue (Talman and Ruskoaho, 2016).