Toggle light / dark theme

Stochastic thermodynamics is an emerging area of physics aimed at better understanding and interpreting thermodynamic concepts away from equilibrium. Over the past few years, findings in these fields have revolutionized the general understanding of different thermodynamic processes operating in finite time.

Adam Frim and Mike DeWeese, two researchers at the University of California, Berkeley (UC Berkeley), have recently carried out a theoretical study exploring the full space of thermodynamic cycles with a continuously changing bath temperature. Their results, presented in a paper published in Physical Review Letters, were obtained using geometric methods. Thermodynamic geometry is an approach to understanding the response of thermodynamic systems by means of studying the geometric space of control.

“For instance, for a gas in a piston, one coordinate in this space of control could correspond to the experimentally controlled volume of the gas and another to the temperature,” DeWeese told Phys.org. “If an experimentalist were to turn those knobs, that plots out some trajectory in this thermodynamic space. What thermodynamic geometry does is assign to each curve a ‘thermodynamic length’ corresponding to the minimum possible dissipated energy of a given path.”

A new UC Davis-led study sheds light on cell type-specific biomarkers, or signs, of melanoma. The research was recently published in the Journal of Investigative Dermatology.

Melanoma, the deadliest of the common skin cancers, is curable with and treatment. However, diagnosing clinically and under the microscope can be complicated by what are called melanocytic nevi—otherwise known as birth marks or moles that are non-cancerous. The development of melanoma is a multi-step process where “melanocytes,” or the cells in the skin that contain melanin, mutate and proliferate. Properly identifying melanoma at an early stage is critical for improved survival.

“The biomarkers of early melanoma evolution and their origin within the tumor and its microenvironment are a potential key to early diagnosis of melanoma,” said corresponding author of the study Maija Kiuru, associate professor of clinical dermatology and pathology at UC Davis Health. “To unravel the mystery, we used high-plex spatial RNA profiling to capture distinct gene expression patterns across cell types during melanoma development. This approach allows studying the expression of hundreds or thousands of genes without disrupting the native architecture of the tumor.”

Scientists begin the countdown to July 12 date with Webb images. Launched in December 2021, the James Webb Space Telescope, the observatory, is all set to ensure it is ready for science.

Webb’s Fine Guidance Sensor (FGS) recently captured a view of stars and galaxies that provides a tantalizing glimpse at what the telescope’s science instruments will reveal in the coming weeks, months, and years.

The resulting engineering test image is among the deepest images of the universe ever taken, representing highly faint objects, and is now the deepest image of the infrared sky. Bright stars stand out with their six long, sharply defined diffraction spikes. This was the effect of Webb’s six-sided mirror segments. Beyond the stars – galaxies fill nearly the entire background.

Don SpantonUmmm so what?

Worms experience pain. Pigs, chickens also experience pain. … See more.

Nicholi AveryAuthor.

Don Spanton good question.

However pain is not a trivial matter when it comes to abortion. Astudy by the University of Otago Centre for Science Communication, found that A person’s stance on abortion is linked to their, often inaccurate, belief ab… See more.

Krishna Shenoy helps to restore lost function for disabled patients by designing prosthetic devices that can translate neural brain activity.

Krishna Shenoy directs the Neural Prosthetic Systems Lab, where his group conducts neuroscience and neuro-engineering research to better understand how the brain controls movement and to design medical systems to assist those with movement disabilities. Shenoy also co-directs the Neural Prosthetics Translational Lab, which uses these advances to help people with severe motor disabilities. Shenoy received his bachelor’s degree in electrical engineering from UC-Irvine and his master’s and doctoral degrees in the same field from MIT. He was a neurobiology postdoctoral fellow at Caltech in Pasadena and then joined Stanford University, where he is a professor of electrical engineering, bioengineering and neurobiology.

We have developed a new method to look for carbon compounds in space, akin to prospecting for oil on Earth. Our method is published in Monthly Notices of the Royal Astronomical Society.

Between the stars lie vast amounts of interstellar gas and , spread thinly throughout our galaxy. The dust can contain compounds of carbon. When it does we call it carbonaceous interstellar dust. This is an important reservoir for the in space. The continual cycle of material between the stars and the gas in the interstellar medium in our galaxy leads to the delivery of organic molecules to newly forming planetary systems.

A special sub-class of organic molecules called prebiotic molecules are thought to play a major role in the formation of life on Earth. Such prebiotic molecules are likely preserved in carbonaceous interstellar dust that are gathered together in planetesimals, in an early stage of planetary formation. The in such environments may determine the planet’s hospitality to the formation of life there. Therefore, it is important to understand the life cycle of carbonaceous interstellar dust to study this possibility further.