Menu

Blog

Page 5085

Oct 24, 2021

Blood mass spectrometry detects residual disease better than standard techniques in light-chain amyloidosis

Posted by in categories: biotech/medical, chemistry

The Mayo Foundation Institutional Review Board (IRB) approved the study. All patients gave written informed consent to have their medical records reviewed and samples analyzed according to IRB requirements and federal regulations. Patients were eligible for this retrospective study if they: were diagnosed with AL amyloidosis between January 2000 and May 2015; were classified as amyloidosis complete hematologic response by immunofixation electrophoresis (IFE), serum free light chain (FLC) by consensus criteria;6,7 had a negative bone marrow by six-color flow cytometry; and had both a stored research sample prior to starting a line of therapy and a repeat sample while in complete hematologic response. The diagnosis of amyloidosis was made by Congo red with green birefringence under polarized light; the typing of the amyloid was with immunohistochemical stains or proteomics8,9. Supplementary Figure 1 is a consort diagram illustrating patient selection. Median time from institution of therapy to complete response (CR) sample was 18 months (interquartile range 9.1, 20 months).

The serum IFE (SIFE), urine IFE (UIFE), FLC, and bone marrow measurements were done as part of routine clinical practice as previously described4,5. Urine samples were concentrated to a maximum of 200× to achieve final concentrations of urine protein between 20 and 80 g/L4,5. The FLC assay (Freelite™, The Binding Site Ltd.) was performed on a Siemens BNII nephelometer10, and an abnormal FLC result was defined as an abnormal FLC κ/λ ratio. Bone marrow clonality was determined by six-color flow cytometry11. This method has sensitivity of ~10−4 to 10−5.

For MASS-FIX, immunoglobulins were enriched from serum using camelid-derived nanobodies directed against the heavy-chain constant domains of IgG, IgA, and IgM or the light-chain constant domains of κ and λ (Thermo Fisher Scientific)4,5. The +1 and +2 charge states of the light chains and heavy chains were measured by configuring the mass spectrometer to analyze ions between an m/z of 9000–32,000 Da.

Oct 24, 2021

Nuclear fusion edges toward the mainstream

Posted by in categories: government, nuclear energy

ABINGDON, England — Harnessing fusion energy into something commercially viable — and maybe, ultimately, a clean source of power that replaces fossil fuels for centuries to come — has long been considered by some as the ultimate moonshot.

But investor interest in fusion energy continues to slowly rise, and the number of startups in the field is multiplying, with an estimated 1,100 people in several countries making their living at these firms. An industry is taking shape, with a growing network of companies that supply highly specialized equipment, like the components of the powerful magnets that fusion devices require.

The British government even recently saw the need to issue regulations for fusion energy — a kind of milestone for a burgeoning industry.

Oct 24, 2021

Delta ‘Plus’ variant may spread more readily

Posted by in category: futurism

It may be more contagious than Delta, but there is no evidence yet that it causes worse illness, experts say.

Oct 24, 2021

Protein Glycation in Diabetes as Determined

Posted by in category: biotech/medical

Glucose monitoring with mass spectrometry circa 2013.


Diabetes is a common endocrine disorder characterized by hyperglycemia leading to nonenzymatic glycation of proteins, responsible for chronic complications. The development of mass spectrometric techniques able to give highly specific and reliable results in proteome field is of wide interest for physicians, giving them new tools to monitor the disease progression and the possible complications related to diabetes, as well as the effectiveness of therapeutic treatments. This paper reports and discusses some of the data pertaining protein glycation in diabetic subjects obtained by matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). The preliminary studies carried out by in vitro protein glycation experiments show clear differences in molecular weight of glycated and unglycated proteins. Then, the attention was focused on plasma proteins human serum albumin (HSA) and immunoglobulin G (IgG). Enzymatic degradation products of in vitro glycated HSA were studied in order to simulate the in vivo enzymatic digestion of glycated species by the immunological system leading to the highly reactive advanced glycation end-products (AGEs) peptides. Further studies led to the evaluation of glycated Apo A-I and glycated haemoglobin levels. A different MALDI approach was employed for the identification of markers of disease in urine samples of healthy, diabetic, nephropathic, and diabetic-nephropathic subjects.

Diabetes is usually considered as a disease related to glucose dysmetabolism. In particular, type 1 diabetes is a chronic disease related to metabolism of carbohydrates, fats, and proteins, caused by the lack of insulin. It results from the marked and progressive inability of the pancreas to secrete insulin, due to autoimmune destruction of the beta cells. On the other hand, type 2 diabetes is caused by islet beta cells being unable to secrete adequate insulin in response to varying degrees of overnutrition, inactivity, obesity, and insulin resistance. Nowadays, the burden of diabetes is enormous, due to its increasing global prevalence and the occurrence of chronic complications affecting many tissues (retinopathy, nephropathy, neuropathy, and cardiovascular disease) reflecting in high direct and indirect costs [1].

Continue reading “Protein Glycation in Diabetes as Determined” »

Oct 24, 2021

Mini mass specs are still looking for an audience

Posted by in categories: biotech/medical, electronics

Mini mass spectrometry can lead to essentially a real life tricorder #startrek


Mass Spectrometry.

Mini mass specs are still looking for an audience.

Continue reading “Mini mass specs are still looking for an audience” »

Oct 24, 2021

BepiColombo completes first Mercury flyby, science provides insight into planet’s unique environment

Posted by in categories: science, space

On October 1 2021, the joint European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) BepiColombo spacecraft successfully performed its first flyby of the solar system’s innermost planet, Mercury. The flyby is the first in a set of six such events BepiColombo will complete before entering orbit around Mercury in late 2025.

Following the flyby, initial science returns from different instruments onboard BepiColombo revealed interesting details about the environment surrounding Mercury, as well as details on the planet itself.

Oct 24, 2021

Ancient Traces of Life Discovered Encased in a 2.5 Billion-Year-Old Ruby

Posted by in category: chemistry

While analyzing some of the world’s oldest colored gemstones, researchers from the University of Waterloo discovered carbon residue that was once ancient life, encased in a 2.5 billion-year-old ruby.

The research team, led by Chris Yakymchuk, professor of Earth and Environmental Sciences at Waterloo, set out to study the geology of rubies to better understand the conditions necessary for ruby formation. During this research in Greenland, which contains the oldest known deposits of rubies in the world, the team found a ruby sample that contained graphite, a mineral made of pure carbon. Analysis of this carbon indicates that it is a remnant of early life.

“The graphite inside this ruby is really unique. It’s the first time we’ve seen evidence of ancient life in ruby-bearing rocks,” says Yakymchuk. “The presence of graphite also gives us more clues to determine how rubies formed at this location, something that is impossible to do directly based on a ruby’s color and chemical composition.”

Oct 24, 2021

Physicist Quantifies Amount of Information in Entire Visible Universe

Posted by in categories: computing, particle physics

Estimate measures information encoded in particles, opens door to practical experiments.

Researchers have long suspected a connection between information and the physical universe, with various paradoxes and thought experiments used to explore how or why information could be encoded in physical matter. The digital age propelled this field of study, suggesting that solving these research questions could have tangible applications across multiple branches of physics and computing.

In AIP Advances, from AIP Publishing, a University of Portsmouth researcher attempts to shed light on exactly how much of this information is out there and presents a numerical estimate for the amount of encoded information in all the visible matter in the universe — approximately 6 times 10 to the power of 80 bits of information. While not the first estimate of its kind, this study’s approach relies on information theory.

Oct 24, 2021

New evidence shows how viral infections could promote Alzheimer’s

Posted by in categories: biotech/medical, neuroscience

I’m convinced a lot of diseases, MS, parkinsons, alzheimers, most cancers, are the result of bacterial or viral infections.


Building on a growing body of evidence linking viral infections with neurodegenerative disease, a new study published in Nature Communications has demonstrated how certain molecules on the surfaces of viruses can promote the aggregation of toxic proteins associated with diseases such as Alzheimer’s and Parkinson’s.

The idea that microbial infections can trigger neurodegenerative disease is not new. As far back as the 1950s scientists have been postulating ways an acute viral infection can lead to progressive neurological problems years, or even decades, later.

Continue reading “New evidence shows how viral infections could promote Alzheimer’s” »

Oct 24, 2021

Astronomers catch a preview of the Sun’s grisly demise

Posted by in category: space

Scientists have long known the fate of our solar system – and likely the fate of Earth itself. Our Sun will eventually become a red giant and swallow Earth.