Toggle light / dark theme

Unlike a 3D zoetrope, which animates a sequence of small changes in objects, a bloom animates as a single, self-contained sculpture. The animation effect of the flower is achieved by progressive rotations of the golden ratio, phi (ϕ), the same ratio that nature uses to generate the spiral patterns we see in pine cones and sunflowers. The rotational speed and frequency of the flower’s strobe light are synchronized so that a flash is produced each time the flower rotates 137.5° (the angular version of phi). The particular shape and behavior of each bloom is determined by a unique parametric seed that I call phi-nomial.

Sculpture: Blooms 2 by John Edmark.


View insights.

If you’re ready for connectivity on the move, SpaceX’s Starlink satellite broadband may soon be the answer. The US Federal Communications Commission on Thursday gave the internet provider the greenlight to provide service on moving vehicles, boats, and planes.

The new authority should help SpaceX meet “the growing user demands that now require connectivity while on the move,” wrote FCC International Bureau Chief Tom Sullivan in the approval, “whether driving an RV across the country, moving a freighter from Europe to a U.S. port, or while on a domestic or international flight.”

BEIJING, June 29 (Reuters) — An uncrewed Chinese spacecraft has acquired imagery data covering all of Mars, including visuals of its south pole, after circling the planet more than 1,300 times since early last year, state media reported on Wednesday.

China’s Tianwen-1 successfully reached the Red Planet in February 2021 on the country’s inaugural mission there. A robotic rover has since been deployed on the surface as an orbiter surveyed the planet from space.

Among the images taken from space were China’s first photographs of the Martian south pole, where almost all of the planet’s water resources are locked.

Under a microscope, mammalian tissues reveal their intricate and elegant architectures. But if you look at the same tissue after tumour formation, you will see bedlam. Itai Yanai, a computational biologist at New York University’s Grossman School of Medicine in New York City, is trying to find order in this chaos. “There is a particular logic to how things are arranged, and spatial transcriptomics is helping us see that,” he says.

‘Spatial transcriptomics’ is a blanket term covering more than a dozen techniques for charting genome-scale gene-expression patterns in tissue samples, developed to complement single-cell RNA-sequencing techniques. Yet these single-cell sequencing methods have a downside — they can rapidly profile the messenger RNA content (or transcriptome) of large numbers of individual cells, but generally require physical disruption of the original tissue, which sacrifices crucial information about how cells are organized and can alter them in ways that might muddy later analyses. Immunologist Ido Amit at the Weizmann Institute of Science in Rehovot, Israel, says that such experiments would sometimes leave his group questioning their results. “Is this really the in situ state, or are we just looking at something which is either not a major [factor] or even not real at all?”

By contrast, spatial transcriptomics allows researchers to study gene expression in intact samples, opening frontiers in cancer research and revealing previously inaccessible biology of otherwise well-characterized tissues. The resulting ‘atlases’ of spatial information can tell scientists which cells make up each tissue, how they are organized and how they communicate. But compiling those atlases isn’t easy, because methods for spatial transcriptomics generally represent a tension between two competing goals: broader transcriptome coverage and tighter spatial resolution. Developments in experimental and computational methods are now helping researchers to balance those aims — and improving cellular resolution in the process.

At present, our brains are mostly dependent on all the stuff below the neck to turn thought into action. But advances in neuroscience are making it easier than ever to hook machines up to minds. See neuroscientists John Donoghue and Sheila Nirenberg, computer scientist Michel Maharbiz, and psychologist Gary Marcus discuss the cutting edge of brain-machine interactions in “Cells to Silicon: Your Brain in 2050,” part of the Big Ideas series at the 2014 World Science Festival.

This program is part of the Big Ideas Series, made possible with support from the John Templeton Foundation.

Visit our Website: http://www.worldsciencefestival.com/
Like us on Facebook: https://www.facebook.com/worldsciencefestival.
Follow us on twitter: https://twitter.com/WorldSciFest.

Original Program date: May 29, 2014

A Matrioshka Brain is a supermassive structure in space consisting of processors and connected to each other into a massive computer around a sun harnessing its energy completely. So far we haven’t built one as we don’t have the technology for it but when we do the question will be if people will be lost in the vast computing power of the Matrishka brain.

Watch all 3 videos with Brendan Caulfield:
3. Future of Humanity https://youtu.be/XbhWEDhcdFk.
2. The Rockets of SpaceX 🚀https://youtu.be/VPgVS9qgBEM
1. The CAR company that will take us to SPACE🚀 https://youtu.be/Y0jiGkAH-pE

Want to make better YouTube videos? You need to understand your DATA and optimize your youtube videos for the audience you want to reach. I recommend using TUBEBUDDY a free Chrome extension that helps you do that:🟥 https://www.tubebuddy.com/BORNATUBERS

#technology #futureofhumanity #elonmusk.