Toggle light / dark theme

Autism spectrum disorder (ASD) is a neurological and developmental condition that affects how humans communicate, learn new things and behave. Symptoms of ASD can include difficulties in interacting with others and adapting to changes in routine, repetitive behaviors, irritability and restricted or fixated interests for specific things.

While symptoms of autism can emerge at any age, the first signs generally start to show within the first two years of a child’s life. People with ASD can encounter numerous challenges, which can be addressed through support services, talk therapy and sometimes medication.

To this day, neuroscientists and have not identified the primary causes of ASD. Nonetheless, past findings suggest that it could be caused by the interaction of specific genes with environmental factors.

The two are worlds apart – and that’s a big problem when it comes to recruitment and retainment. On one side is the need to protect American citizens and data from cyber attackers looking to disrupt our way of life by keeping networks and access locked away in a building. On the other side is the best and brightest talent that will bring innovative solutions to our nation’s defense and security organizations who expect flexible remote access – and can easily find it in the private sector.

To maintain our status as a global world power and stay one step ahead of our adversaries, we are going to have to find a balance between the two. To do that, the way we work across the DoD and IC must change.

The Federal government understands the significance of remote access on meeting mission objectives now and in the future. Agency leaders are looking to the private sector for technology that helps them maintain the highest security levels while meeting the ease-of-access demands of today’s worker – and can be implemented quickly. To support this, the National Security Agency developed the Commercial Solutions for Classified (CSfC) program.

In our latest article, our Divisional Chief Nurse, Clare, discusses the social effects of friendships for people with learning disabilities and/or autism and the importance of those friendships. She also discusses how COVID-19 and the different restrictions have affected people with learning disabilities and/or autism and how best to support them.

Graphene scientists from The University of Manchester have created a novel “nano-petri dish” using two-dimensional (2D) materials to create a new method of observing how atoms move in liquid.

Publishing in the journal Nature, the team led by researchers based at the National Graphene Institute (NGI) used stacks of 2D materials like graphene to trap liquid in order to further understand how the presence of liquid changes the behavior of the solid.

The team were able to capture images of single atoms “swimming” in liquid for the first time. The findings could have widespread impact on the future development of green technologies such as hydrogen production.

MRI, electroencephalography (EEG) and magnetoencephalography have long served as the tools to study brain activity, but new research from Carnegie Mellon University introduces a novel, AI-based dynamic brain imaging technology which could map out rapidly changing electrical activity in the brain with high speed, high resolution, and low cost. The advancement comes on the heels of more than thirty years of research that Bin He has undertaken, focused on ways to improve non-invasive dynamic brain imaging technology.

Brain is distributed over the three-dimensional brain and rapidly changes over time. Many efforts have been made to image and dysfunction, and each method bears pros and cons. For example, MRI has commonly been used to study , but is not fast enough to capture brain dynamics. EEG is a favorable alternative to MRI technology however, its less-than-optimal spatial resolution has been a major hindrance in its wide utility for imaging.

Electrophysiological source imaging has also been pursued, in which scalp EEG recordings are translated back to the brain using and machine learning to reconstruct dynamic pictures of brain activity over time. While EEG source imaging is generally cheaper and faster, specific training and expertise is needed for users to select and tune parameters for every recording. In new published work, He and his group introduce a first of its kind AI-based dynamic brain imaging methodology, that has the potential of imaging dynamics of neural circuits with precision and speed.