Toggle light / dark theme

After a US Supreme Court draft decision on Roe v. Wade was leaked in May, Dr. Joshua Trebach noticed a disturbing turn in the online conversation around abortion.

“I started seeing things on social media, things like TikTok, Twitter, Facebook, Instagram, people saying ‘oh, if Roe v. Wade does get overturned, here are some secret, sneaky ways that you can drink some tea and have an abortion,’” Trebach said.

Now that Roe v. Wade has been overturned and some states are putting strict limits on abortions, there’s widespread confusion about whether the procedures are available and to whom. Physicians and poison control officials say they’re worried that people seeking abortions will turn to ineffective and dangerous methods shared online, potentially delaying or preventing safe, proven abortion care.

A Google executive said the company’s data shows TikTok and Instagram are a threat to Google Search with Gen Z, and Google is working to keep up.


Researchers at Cornell University have come up with a novel biomaterial that can be used to create artificial skin capable of mimicking the behavior of natural human tissues. Thanks to its uniqu.

Researchers at Cornell University have come up with a novel biomaterial that can be used to create artificial skin capable of mimicking the behavior of natural human tissues.

Thanks to its unique composition, made up of collagen mixed with a ‘zwitterionic’ hydrogel, the team’s biohybrid composite is said to be soft and biocompatible, but flexible enough to withstand continued distortion. While the scientists’ R&D project remains ongoing, they say their bio-ink could one day be used as a basis for 3D printing scaffolds from patients’ cells, which effectively heal wounds in-situ.

“Ultimately, we want to create something for regenerative medicine purposes, such as a piece of scaffold that can withstand some initial loads until the tissue fully regenerates,” said Nikolaos Bouklas, one of the study’s co-lead authors. “With this material, you could 3D print a porous scaffold with cells that could eventually create the actual tissue around the scaffold.”

Because the heart, unlike other organs, cannot heal itself after injury, heart disease—the top cause of mortality in the U.S.—is particularly lethal. For this reason, tissue engineering will be crucial for the development of cardiac medicine, ultimately leading to the mass production of a whole human heart for transplant.

Researchers need to duplicate the distinctive structures that make up the heart in order to construct a human heart from the ground up. This involves re-creating helical geometries, which cause the heart to beat in a twisting pattern. It has long been hypothesized that this twisting action is essential for pumping blood at high rates, but establishing this has proven problematic, in part because designing hearts with various geometries and alignments has proven difficult.

Relatively new COVID-19 subvariant BA.5 takes some of Omicron’s worst traits—transmissibility and immune evasion—to a new level.

But it also combines them with a penchant for affecting the lungs reminiscent of the Delta variant that hit the U.S last summer and fall, according to two recent studies.

In the case of Delta, COVID tended to accumulate in and affect the lungs, potentially resulting in more severe disease. Until recently, a silver lining of Omicron has been its tendency to instead accumulate in the upper respiratory tract, causing symptoms more similar to a cold or the flu.

Circa 2010


How do Utricularia, aquatic carnivorous plants commonly found in marshes, manage to capture their preys in less than a millisecond? A team of French physicists from the Laboratoire Interdisciplinaire de Physique has identified the ingenious mechanical process that enables the plant to ensnare any small, a little too curious aquatic animals that venture too closely. It is the reversal of its curvature and the release of the associated elastic energy that make it the fastest known aquatic trap in the world. These results are published on 16 February 2011 on the website of the journal Proceedings of the Royal Society of London B.

Utricularia are that capture small prey with remarkable suction . Utricularia are rootless plants formed of very thin, forked leaves on which wineskin-shaped traps, just a few millimeters in size, are attached. Only the flowers, standing on long stems, stick out of the water. The traps are underwater. When an aquatic animal (water fleas, cyclops, daphnia or small ) touches its sensitive hairs, the trap sucks it in, in a fraction of a second, along with water, which is then drained through its walls.

In order to understand the mechanical process involved, the researchers observed and recorded the extremely rapid movements of the capture phase with a . The scientists show that the trap door buckles, which reverses its curvature and allows it to open and close very rapidly, thus entrapping its prey. The suction time (less than a millisecond) is much shorter than was previously assumed.

Researchers at Simon Fraser University have made a crucial breakthrough in the development of quantum technology.

Their research, published in Nature today, describes their observations of more than 150,000 silicon “T center” photon-spin qubits, an important milestone that unlocks immediate opportunities to construct massively scalable quantum computers and the quantum internet that will connect them.

Quantum computing has to provide computing power well beyond the capabilities of today’s supercomputers, which could enable advances in many other fields, including chemistry, , medicine and cybersecurity.