Menu

Blog

Page 5007

Jun 28, 2022

Nanotube artificial muscles pick up the pace

Posted by in categories: biotech/medical, chemistry, cyborgs, nanotechnology, robotics/AI

An electrochemically powered artificial muscle made from twisted carbon nanotubes contracts more when driven faster thanks to a novel conductive polymer coating. Developed by Ray Baughman of the University of Texas at Dallas in the US and an international team, the device overcomes some of the limitations of previous artificial muscles, and could have applications in robotics, smart textiles and heart pumps.

Carbon nanotubes (CNTs) are rolled-up sheets of carbon with walls as thin as a single atom. When twisted together to form a yarn and placed in an electrolyte bath, CNTs expand and contract in response to electrochemical inputs, much like a natural muscle. In a typical set-up, a potential difference between the yarn and an electrode drives ions from the electrolyte into the yarn, causing the muscle to actuate.

While such CNT muscles are highly energy efficient and extremely strong – they can lift loads up to 100,000 times their own weight – they do have limitations. The main one is that they are bipolar, meaning that the direction of their movement switches whenever the potential drops to zero. This reduces the overall stroke of the actuator. Another drawback is that the muscle’s capacitance decreases when the potential is changed quickly, which also causes the stroke to decrease.

Jun 28, 2022

Tiny particles produce huge photon avalanches

Posted by in categories: chemistry, nanotechnology, particle physics

Researchers in the US, Poland and Korea have observed photon avalanching – a chain-reaction-like process in which the absorption of a single photon triggers the emission of many – in tiny crystals just 25–30 nm in diameter. This highly nonlinear phenomenon had previously only been seen in bulk materials, and team leader James Schuck says that replicating it in nanoparticles could lead to “revolutionary new applications” in imaging, sensing and light detection (Nature 589 230).

Photon avalanching involves a process known as upconversion, whereby the energy of the emitted photons is higher than the energy of the photons that triggered the avalanche. Materials based on lanthanides (chemical elements with atomic numbers between 57 and 71) can support this process in part because their internal atomic structure enables them to store energy for long periods of time. Even so, achieving photon avalanching in lanthanide systems is difficult because high concentrations of lanthanide ions are needed to keep the avalanche going, and the relatively large volume of material required has previously restricted applications.

In the latest work, Schuck and colleagues at Columbia University, together with collaborators at Lawrence Berkeley National Laboratory, the Polish Academy of Sciences and Sungkyunkwan University, observed photon avalanching in lanthanide nanocrystals after exciting them with a laser at near-infrared wavelengths of either 1,064 or 1450 nm. The crystals are based on sodium yttrium fluoride in which 8% of the yttrium ions have been replaced with thulium. This doping fraction is much higher than the 0.2–1% typically found in previous work on photon avalanching.

Jun 28, 2022

Capillary condensation follows classical law even at the nanoscale

Posted by in categories: information science, law, nanotechnology

When water vapour spontaneously condenses inside capillaries just 1 nm thick, it behaves according to the 150-year-old Kelvin equation – defying predictions that the theory breaks down at the atomic scale. Indeed, researchers at the University of Manchester have showed that the equation is valid even for capillaries that accommodate only a single layer of water molecules (Nature 588 250).

Condensation inside capillaries is ubiquitous and many physical processes – including friction, stiction, lubrication and corrosion – are affected by it. The Kelvin equation relates the surface tension of water to its temperature and the diameter of its meniscus. It predicts that if the ambient humidity is between 30–50%, then flat capillaries less than 1.5 nm thick will spontaneously fill with water that condenses from the air.

Real world capillaries can be even smaller, but for them it is impossible to define the curvature of a liquid’s meniscus so the Kelvin equation should no longer hold. However, because such tight confinement is difficult to achieve in the laboratory, this had yet to be tested.

Jun 28, 2022

Combat robotics

Posted by in categories: physics, robotics/AI

TV robot fights are not just entertainment – they can also help turn students on to physics and engineering, as Robert P Crease finds out.

The two 110 kg combat robots squared off. One, known as Poison Arrow, was armed with a toothed spinning drum. Its adversary, Son of Wyachi (SOW), had whirling hammers. Poison Arrow smashed into SOW, sending it flying across the arena. SOW broke its radio receiver as it crash-landed, lying motionless as the referee declared a knockout.

Continue reading “Combat robotics” »

Jun 28, 2022

Atomic quantum processors make their debut

Posted by in categories: computing, information science, particle physics, quantum physics

Two research groups demonstrate quantum algorithms using neutral atoms as qubits. Tim Wogan reports.

The first quantum processors that use neutral atoms as qubits have been produced independently by two US-based groups. The result offers the possibility of building quantum computers that could be easier to scale up than current devices.

Two technologies have dominated quantum computing so far, but they are not without issues. Superconducting qubits must be constructed individually, making it nearly impossible to fabricate identical copies, so the probability of the output being correct is reduced – causing what is known as “gate fidelity”. Moreover, each qubit must be cooled close to absolute zero. Trapped ions, on the other hand, have the advantage that each ion is guaranteed to be indistinguishable by the laws of quantum mechanics. But while ions in a vacuum are relatively easy to isolate from thermal noise, they are strongly interacting and so require electric fields to move them around.

Jun 28, 2022

High-power lasers promise new defence strategy

Posted by in categories: drones, energy, military, physics

Physicists at QinetiQ are developing systems that combine and control high-energy laser beams to provide a powerful and cost-effective countermeasure against drones and other uncrewed objects.

Around the world interest is growing in using high-power laser beams to disable airborne invaders such as drones and other uncrewed objects. These so-called directed-energy systems have the potential to damage or destroy small aerial devices at a fraction of the cost of launching conventional defence missiles or munitions. They have the added advantage that they can be reused many times to counter multiple attacks as well as the growing threat of drone swarms.

At QinetiQ, a UK-based technology company specializing in defence and security solutions, around 10 years of research effort into the physics underpinning these directed-energy systems has demonstrated enough potential to start building and testing practical prototypes. “We have taken a high-risk, high-reward approach to developing these systems,” says Richard Hoad, capability area lead for novel effectors and resilience at QinetiQ. “Our company and our customers in the defence sector have just significantly increased their investment to enable us to prove that our solution is as effective in a wide range of real environments as it is in testing.”

Jun 28, 2022

Time crystals: the search for a new phase of matter

Posted by in categories: particle physics, quantum physics, robotics/AI, space

Pedram Roushan, from Google’s Quantum AI team in California, describes this elusive form of matter – and how it could be simulated on the company’s Sycamore quantum processor.

With their enchanting beauty, crystalline solids have captivated us for centuries. Crystals, which range from snowflakes to diamonds, are made up of atoms or molecules that are regularly arranged in space. They have provided foundational insights that led to the development of the quantum theory of solids. Crystals have also helped develop a framework for understanding other spatially ordered phases, such as superconductors, liquid crystals and ferromagnets.

Periodic oscillations are another ubiquitous phenomenon. They appear at all scales, ranging from atomic oscillations to orbiting planets. For many years, we used them to mark the passage of time, and they even made us ponder the possibility of perpetual motion. What is common between these periodic patterns – either in space or time – is that they lead to systems with reduced symmetries. Without periodicity, any position in space, or any instance of time, is indistinguishable from any other. Periodicity breaks the translational symmetry of space or time.

Jun 28, 2022

Programmable photonic chip lights up quantum computing

Posted by in categories: computing, quantum physics

Tight squeeze The Xanadu X8 quantum photonic processor used in the study. (Courtesy: Xanadu) Computers are made of chips, and in the future, some of those chips might use light as their main ingredient. Scientists from the Ontario, Canada-based…


Giant bacteria, Ca. Thiomargarita magnifica, have been found in Guadeloupe. They have organelles, DNA and measure one centimeter long.

Jun 28, 2022

Scientists Discover Bacterium So Large You Can Hold It in Your Hand

Posted by in category: biotech/medical

Giant bacteria, Ca. Thiomargarita magnifica, have been found in Guadeloupe. They have organelles, DNA and measure one centimeter long.

Jun 28, 2022

This augmented reality platform transforms technical designs, and data into real-time AR displays that can be overlaid on the view of a physical job site

Posted by in category: augmented reality

Click on photo to start video.

🎥 vGIS Inc.