Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

IQ appears to affect ability to listen in noisy settings

You’re in a bustling café with a friend. The din is making it hard to tune in to the conversation. The scenario might suggest you’d benefit from a hearing aid. On the other hand, new research suggests that speech-perception difficulty might relate to your cognitive ability.

In a study of three groups—individuals with autism, and a “neurotypical” control group—researchers found that cognitive ability was significantly associated with how well the participants, all with typical hearing, processed speech in noisy environments.

“The relationship between cognitive ability and speech-perception performance transcended diagnostic categories. That finding was consistent across all three groups,” said the study’s lead investigator, Bonnie Lau. She is a research assistant professor in otolaryngology–head and at the University of Washington School of Medicine and directs lab studies of auditory brain development.

Why do we remember some life moments—but not others?

Some memories are easy to recall—lush with detail, fresh as the moment itself. Others are more tenuous, like faded sketches, and the most stubborn ones can refuse to resurface at all. Why do our brains enshrine some memories so indelibly, and let others slip away?

A new Boston University study has a potential answer, suggesting that memories of mundane moments are given extra sticking power if they become connected to a significant event—something surprising, rewarding, or carrying an emotional punch. Watch your Powerball numbers cash in, for example, and you’re likely to remember what you were doing in the moments before, however unremarkable and unmemorable they might have otherwise been.

The findings, published in Science Advances, could potentially lead to improved treatments for people with or even help students retain tricky concepts.

Physicists set record with 6,100-qubit array

Quantum computers will need large numbers of qubits to tackle challenging problems in physics, chemistry, and beyond. Unlike classical bits, qubits can exist in two states at once—a phenomenon called superposition. This quirk of quantum physics gives quantum computers the potential to perform certain complex calculations better than their classical counterparts, but it also means the qubits are fragile. To compensate, researchers are building quantum computers with extra, redundant qubits to correct any errors. That is why robust quantum computers will require hundreds of thousands of qubits.

Now, in a step toward this vision, Caltech physicists have created the largest array ever assembled: 6,100 neutral-atom qubits trapped in a grid by lasers. Previous arrays of this kind contained only hundreds of qubits.

This milestone comes amid a rapidly growing race to scale up quantum computers. There are several approaches in development, including those based on superconducting circuits, trapped ions, and neutral atoms, as used in the new study.

Spin may resolve century-old puzzle of light’s momentum in matter

When you shine a flashlight into a glass of water, the beam bends. That simple observation, familiar since ancient times, hides one of the oldest puzzles in physics: what really happens to the momentum of light when it enters a medium?

In , is not just a wave—it also behaves like a particle, carrying energy and . For more than a century, scientists have debated whether light’s momentum inside matter is larger or smaller than in empty space. The two competing answers are known as the Minkowski momentum, which is larger and seems to explain how light bends, and the Abraham momentum, which is smaller and matches the actual push or pull that light exerts on the medium.

The controversy never went away because experiments seemed to confirm both sides. Some setups measured the larger Minkowski value, others supported Abraham, leaving physicists with a paradox.

Astronomers pinpoint the location of the brightest fast radio burst to date

An international collaboration of astronomers, including researchers from the University of Toronto, have detected the brightest Fast Radio Burst (FRB) to date—and have been able to pinpoint its location in a nearby galaxy by using a network of radio telescopes.

FRBs are extremely energetic flashes from distant sources from across the universe that are caused by extreme astrophysical phenomena. Yet, they remain poorly understood by scientists and are among astronomy’s most mysterious phenomena. Pinpointing their location promises to usher in a new era of discovery, allowing scientists to trace their true cosmic origins.

The new FRB signal, called FRB 20250316A and playfully nicknamed RBFLOAT (“radio brightest flash of all time”), was very precisely localized using a new FRB Outrigger array as part of the Canadian Hydrogen-Intensity Mapping Experiment (CHIME), which has detected thousands of FRBs since 2018. These smaller versions of the CHIME instrument—located in British Columbia, Northern California and West Virginia—allow astronomers to perform very (VLBI), a technique that can pinpoint the location of FRBs with unprecedented accuracy.

Broadband photodetector material senses visible light to long-wave infrared, simplifying device design

A research team in South Korea has developed a next-generation sensor material capable of integrating the detection of multiple light wavelengths.

A joint research team led by Dr. Wooseok Song at the Korea Research Institute of Chemical Technology (KRICT) and Professor Dae Ho Yoon at Sungkyunkwan University successfully developed a new photodetector material that can sense a wider range of wavelengths compared to existing commercial materials, and achieved cost-effective synthesis on a 6-inch wafer-scale substrate.

This research is published in ACS Nano.

Key enzyme for high-value natural sweetener production identified and characterized

Steviol glycosides, natural sweeteners extracted from Stevia rebaudiana, are widely used as sucrose substitutes due to their high sweetness and low caloric value. Among them, Rebaudioside M (Reb M) is regarded as a next-generation, high-value steviol glycoside product because of its intense sweetness and superior taste profile. However, the natural abundance of Reb M in Stevia is extremely low.

Efficient biosynthetic methods are needed to meet market demand. Until now, the key enzyme catalyzing the conversion of Rebaudioside D (Reb D) to Reb M in the has not been identified, and it is generally assumed to be UGT76G1. However, UGT76G1 exhibits strict regioselectivity for the C13 position of steviol glycosides, while its at the C19 position is very weak.

In a study published in the Proceedings of the National Academy of Sciences on September 17, a team led by Prof. Yin Heng from the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences identified the key glycosyltransferase that catalyzes the conversion of Reb D to Reb M, and revealed the underlying its substrate regioselectivity.

Evidence of a spin-liquid state emerges in pressurized oxygen

Oxygen, the colorless and odorless gas that is essential to the survival of humans and other living organisms, is estimated to make up around 21% of Earth’s atmosphere. While the primary properties of oxygen are now well understood, the states that can emerge in it at extreme conditions (e.g., at high pressures) are still under investigation.

Researchers at Shanghai Advanced Research in Physical Sciences (SHARPS), the Center for High Pressure Science and Technology Advanced Research in China, the Italian National Institute of Optics of the National Council of Research (CNR-INO), the European Synchrotron Radiation Facility and University Montpellier carried out a study exploring the properties of a high– phase of solid , known as epsilon oxygen (ε-O2).

Their paper, published in Physical Review Letters, offers the first indirect evidence that a dynamic magnetic state, known as a spin-liquid state, emerges in epsilon oxygen.

Primordial black holes may trigger Type Ia supernovae without companion stars

A new article published in The Astrophysical Journal explores a new theory of how Type Ia supernovae, the powerful stellar explosions that astronomers use to measure distances across the universe, might be triggered. Traditionally, these supernovae occur when a white dwarf star explodes after interacting with a companion star. But this explanation has limitations, leaving open questions about how these events line up with the consistent patterns astronomers actually observe.

/* */