Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Two-step excitation unlocks and steers exotic nanolight

An international team of researchers has developed a novel technique to efficiently excite and control highly-confined light-matter waves, known as higher-order hyperbolic phonon polaritons. Their method not only sets new records for the quality and propagation distance of these waves but also uses a sharp boundary to create a form of pseudo-birefringence, sorting and steering the waves by mode into different directions.

This advance, published in Nature Photonics, opens new avenues for developing nanoscale optical devices for high-speed signal processing and ultra-sensitive chemical detection.

In the quest for ultra-compact, light-based circuits, scientists are turning to polaritons—hybrid modes formed from the coupling of light with optically active material excitations such as plasmons or phonons. These remarkable quasiparticles can squeeze light into spaces far smaller than its natural wavelength, overcoming the conventional limits of far-field optics. However, exciting most confined variants—higher-order polaritons—has been a major challenge, as they demand a much larger momentum boost than single-step excitation methods can deliver.

Plasma rampdown prediction model could improve reliability of fusion power plants

Tokamaks are machines that are meant to hold and harness the power of the sun. These fusion machines use powerful magnets to contain a plasma hotter than the sun’s core and push the plasma’s atoms to fuse and release energy. If tokamaks can operate safely and efficiently, the machines could one day provide clean and limitless fusion energy.

Today, there are a number of experimental tokamaks in operation around the world, with more underway. Most are small-scale research machines built to investigate how the devices can spin up and harness its energy.

One of the challenges that tokamaks face is how to safely and reliably turn off a plasma current that is circulating at speeds of up to 100 kilometers per second, at temperatures of over 100 million degrees Celsius.

High-precision measurements reveal the energies of nuclear decays

Neutrinos are very common fundamental particles included in the Standard Model of particle physics. Measuring their properties allows for creating more accurate models of the birth of the universe, the life of stars and the interactions between fundamental particles. Some of the open questions include the absolute mass of the neutrino and whether neutrinos are their own antiparticles.

“The mass and the antiparticle nature of neutrinos can be studied by measuring the radioactive beta and double-beta decays of . There are likely some tens of suitable nuclei for such studies. The energy released in the decay, called the Q value, affects whether a nucleus can be used in the studies,” says Doctoral Researcher Jouni Ruotsalainen from the University of Jyväskylä, Finland.

Quantum Tunneling Experiments Earn Team The Nobel Prize in Physics

Briton John Clarke, Frenchman Michel Devoret and American John Martinis won the Nobel Prize in Physics on Tuesday for putting quantum mechanics into action and enabling the development of all kinds of digital technology from cellphones to a new generation of computers.

The Nobel jury noted that their work had “provided opportunities for developing the next generation of quantum technology, including quantum cryptography, quantum computers and quantum sensors”

Quantum mechanics describes how differently things work on incredibly small scales.

Several Psychiatric Disorders Share The Same Root Cause, Study Shows

Researchers recently discovered that eight different psychiatric conditions share a common genetic basis.

A study published this year pinpointed specific variants among those shared genes and shows how they behave during brain development.

The US team found many of these variants remain active for extended periods, potentially influencing multiple developmental stages – and offering new targets for treatments that could address several disorders at once.

Century-Old Mystery Solved: Scientists Measure a Fraction of an Electron, Unlocking the Secret to Catalysis

The discovery could significantly reduce the production costs of fuels, chemicals, and materials. A research team from the University of Minnesota Twin Cities College of Science and Engineering and the University of Houston’s Cullen College of Engineering has identified, and for the first time me

Dark Matter and Dark Energy Don’t Exist, New Study Claims

A new study argues that dark matter and dark energy might be illusions caused by the universe’s forces fading over time. For many years, scientists have thought that dark matter and dark energy make up most of the cosmos. A new study, however, challenges that long-held belief by proposing that th

BatShadow Group Uses New Go-Based ‘Vampire Bot’ Malware to Hunt Job Seekers

In October 2024, Cyble also disclosed details of a sophisticated multi-stage attack campaign orchestrated by a Vietnamese threat actor that targeted job seekers and digital marketing professionals with Quasar RAT using phishing emails containing booby-trapped job description files.

BatShadow is assessed to be active for at least a year, with prior campaigns using similar domains, such as samsung-work[.]com, to propagate malware families including Agent Tesla, Lumma Stealer, and Venom RAT.

“The BatShadow threat group continues to employ sophisticated social engineering tactics to target job seekers and digital marketing professionals,” Aryaka said. “By leveraging disguised documents and a multi-stage infection chain, the group delivers a Go-based Vampire Bot capable of system surveillance, data exfiltration, and remote task execution.”

/* */