Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Flash Joule heating lights up lithium extraction from ores

A new one‑step, water‑, acid‑, and alkali‑free method for extracting high‑purity lithium from spodumene ore has the potential to transform critical metal processing and enhance renewable energy supply chains. The study is published in Science Advances.

As the demand for lithium continues to rise, particularly for use in , smartphones and power storage, current extraction methods are struggling to keep pace. Extracting lithium from is a lengthy process, and traditional methods that use heat and chemicals to extract lithium from rock produce significant amounts of harmful waste.

Researchers led by James Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering at Rice University, have developed a faster and cleaner method using flash Joule heating (FJH). This technique rapidly heats materials to thousands of degrees within milliseconds and works in conjunction with chlorine gas, exposing the rock to intense heat and chlorine gas, they can quickly convert spodumene ore into usable lithium.

Eco-friendly technology removes toxic PFAS from water

Rice University researchers, in collaboration with international partners, have developed the first eco-friendly technology to rapidly capture and destroy toxic “forever chemicals” (PFAS) in water. The findings, recently published in Advanced Materials, mark a major step toward addressing one of the world’s most persistent environmental threats.

The study was led by Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong, a professor at Rice’s George R. Brown School of Engineering and Computing, and conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology (KAIST), and Keon-Ham Kim, professor at Pukyung National University in South Korea.

PFAS, short for per-and polyfluoroalkyl substances, are synthetic chemicals first manufactured in the 1940s and used in products ranging from Teflon pans to waterproof clothing and food packaging. Their ability to resist heat, grease and water has made them valuable for industry and consumers. But that same resistance means they do not easily degrade, earning them the nickname “forever chemicals.”

How order and disorder direct chemical reactivity

In nature, the behavior of systems—whether large or small—is always governed by a few fundamental principles. For instance, objects fall downward because it minimizes their energy. At the same time, order and disorder are key variables that also shape physical processes. Systems—especially our homes—tend to become increasingly disordered over time. Even at the microscopic level, systems tend to favor increased disorder, a phenomenon known as an increase in so-called entropy.

These two variables—energy and entropy—play an important role in . Processes occur automatically when energy can be reduced or entropy (disorder) increases.

Under standard conditions—such as in a glass of water—water autodissociation is hindered by both factors, making it a highly unlikely event. However, when strong electric fields are applied, the process can be dramatically accelerated.

SHIELD activated: Researchers build defense to protect drones from cyberattacks

Fooled into following a hacker’s rogue commands, a drone is liable to do any number of things. Fly erratically. Speed up. Slow down. Hang suspended in the air. Reverse course. Take a new course. And, most dangerously: Crash.

What the compromised drone cannot do, however, is regain control. Lost to its original assignment—whether it’s delivering a package, inspecting an aging bridge or monitoring the health of crops—the machine is essentially useless.

At FIU, cybersecurity researchers have developed a series of countermeasures to fight back mid-flight against hostile takeovers.

Computer advances and ‘invisibility cloak’ vie for physics Nobel

A math theory powering computer image compression, an “invisibility cloak” or the science behind the James Webb Space Telescope are some achievements that could be honored when the Nobel physics prize is awarded Tuesday.

The award, to be announced at 11:45 am (0945 GMT) in Stockholm, is the second Nobel of the season, after the Medicine Prize was awarded on Monday to a US-Japanese trio for research into the human immune system.

Mary Brunkow and Fred Ramsdell, of the United States, and Japan’s Shimon Sakaguchi were recognized by the Nobel jury for identifying immunological “security guards”

How hair and skin characteristics affect brain imaging: Making fNIRS research more inclusive

Functional near-infrared spectroscopy (fNIRS) is a promising non-invasive neuroimaging technique that works by detecting changes in blood oxygenation linked to neural activity using near-infrared light. Compared to fMRI and various other methods commonly used to study the brain, fNIRS is easier to apply outside of laboratory settings.

This technique requires study participants to wear a special cap fitted with optodes, which consist of light sources that emit near-infrared light into the scalp and detectors that measure the light that is reflected back. These measurements can be used to estimate blood oxygenation in the brain’s outer layers. Despite its potential for conducting research in everyday settings, the quality of signals collected using fNIRS is known to be influenced by biophysical factors.

A team of researchers at Boston University recently set out to better delineate the extent to which people’s and skin color, age and sex impact the quality of fNIRS signals picked up from their scalp.

Sleep patterns linked to variation in health, cognition, lifestyle and brain organization

Researchers led by Aurore Perrault at Concordia University, Canada and Valeria Kebets at McGill University, Canada, have used a complex data-driven analysis to uncover relationships among multiple aspects of sleep and individual variation in health, cognition, and lifestyle.

Published in PLOS Biology, the study reveals five –biopsychosocial profiles and their associated patterns of functional connectivity among brain regions.

Most studies of sleep focus on a single aspect, such as duration, and examine how it relates to a single outcome, like poor mental health. However, trying to understand and predict outcomes by combining the results of many different single-association studies invariably fails. The new study by Perrault and team takes a different approach. Using a sample of 770 people from the Human Connectome Project dataset, they conducted a multivariate, data-driven analysis.

Depression genetics differ by sex: Study find females carry higher risk than males do

Important genetic differences in how females and males experience depression have been revealed for the first time in findings that could pave the way for more targeted intervention and treatments.

In the study, published in Nature Communications, scientists found that contribute more to risk in than in males. The team discovered about twice as many genetic “flags” for depression in the DNA of females as they did in that of males.

“We already know that females are twice as likely to suffer from depression in their lifetime than males,” said Dr. Brittany Mitchell, Senior Researcher at QIMR Berghofer’s Genetic Epidemiology Lab. “And we also know that depression looks very different from one person to another. Until now, there hasn’t been much consistent research to explain why depression affects females and males differently, including the possible role of genetics.”

Observing quantum weirdness in our world: Nobel physics explained

The Nobel Prize in Physics was awarded to three scientists on Tuesday for discovering that a bizarre barrier-defying phenomenon in the quantum realm could be observed on an electrical circuit in our classical world.

The discovery, which involved an effect called , laid the foundations for technology now being used by Google and IBM aiming to build the quantum computers of the future.

Here is what you need to know about the Nobel-winning work by John Clarke of the UK, Frenchman Michel Devoret and American John Martinis.

First device based on ‘optical thermodynamics’ can route light without switches

A team of researchers at the Ming Hsieh Department of Electrical and Computer Engineering has created a new breakthrough in photonics: the design of the first optical device that follows the emerging framework of optical thermodynamics.

The work, reported in Nature Photonics, introduces a fundamentally new way of routing light in nonlinear systems—meaning systems that do not require switches, external control, or digital addressing. Instead, light naturally finds its way through the device, guided by simple thermodynamic principles.

/* */