Toggle light / dark theme

For decades there has been near constant progress in reducing the size, and increasing the performance, of the circuits that power computers and smartphones. But Moore’s Law is ending as physical limitations – such as the number of transistors that can fit on a chip and the heat that results from packing them ever more densely – are slowing the rate of performance increases. Computing capacity is gradually plateauing, even as artificial intelligence, machine learning and other data-intensive applications demand ever greater computational power.

Novel technologies are needed to address this challenge. A potential solution comes from photonics, which offers lower energy consumption and reduced latency than electronics.

One of the most promising approaches is in-memory computing, which requires the use of photonic memories. Passing light signals through these memories makes it possible to perform operations nearly instantaneously. But solutions proposed for creating such memories have faced challenges such as low switching speeds and limited programmability.

Xenon gas inhalation reduced neurodegeneration and boosted protection in preclinical models of Alzheimer’s disease. Most treatments being pursued today to protect against Alzheimer’s disease focus on amyloid plaques and tau tangles that accumulate in the brain, but new research from Mass General Brigham and Washington University School of Medicine in St. Louis points to a novel — and noble — approach: using Xenon gas. The study found that Xenon gas inhalation suppressed neuroinflammation, reduced brain atrophy, and increased protective neuronal states in mouse models of Alzheimer’s disease. Results are published in Science Translational Medicine, and a phase 1 clinical trial of the treatment in healthy volunteers will begin in early 2025.

“It is a very novel discovery showing that simply inhaling an inert gas can have such a profound neuroprotective effect,” said senior and co-corresponding author Oleg Butovsky, PhD, of the Ann Romney Center for Neurologic Diseases at Brigham and Women’s Hospital (BWH), a founding member of the Mass General Brigham healthcare system. “One of the main limitations in the field of Alzheimer’s disease research and treatment is that it is extremely difficult to design medications that can pass the blood-brain barrier — but Xenon gas does. We look forward to seeing this novel approach tested in humans.”

“It is exciting that in both animal models that model different aspects of Alzheimer’s disease, amyloid pathology in one model and tau pathology in another model, that Xenon had protective effects in both situations,” said senior and co-corresponding author David M. Holtzman, MD, from Washington University School of Medicine in St. Louis.

Researchers have demonstrated, for the first time in the world using mice, the ability to overcome significant challenges in gene therapy using adeno-associated virus vectors (AAV), specifically “production of neutralizing antibodies” and “hepatotoxicity,” by employing a novel smart nanomachine equipped with AAV.

The research results are published in the journal ACS Nano.

The co-first authors of the paper are Assistant Professor Yuto Honda from the Laboratory for Chemistry and Life Science at the Institute of Science Tokyo. Dr. Hiroaki Kino, a Principal Research Scientist at iCONM, and Prof. Nishiyama are listed as corresponding authors alongside Prof. Honda, while other researchers from iCONM are acknowledged as co-authors.

Humans are not yet done cooking. We’re continuing to evolve and adjust to the world around us, the records of our adaptations written in our bodies.

We know that there are some environments that can make us unwell. Mountain climbers often succumb to altitude sickness – the body’s reaction to a significant drop in atmospheric pressure, which means less oxygen is taken in with each breath.

And yet, in high altitudes on the Tibetan Plateau, where oxygen levels in the air people breathe are notably lower than lower altitudes, human communities thrive.

UMD researchers have discovered key mechanisms in gene regulation that could improve the design of RNA-based medicines.

RNA-based medicines are among the most promising approaches to combating human disease, as evidenced by the recent successes of RNA

Ribonucleic acid (RNA) is a polymeric molecule similar to DNA that is essential in various biological roles in coding, decoding, regulation and expression of genes. Both are nucleic acids, but unlike DNA, RNA is single-stranded. An RNA strand has a backbone made of alternating sugar (ribose) and phosphate groups. Attached to each sugar is one of four bases—adenine (A), uracil (U), cytosine ©, or guanine (G). Different types of RNA exist in the cell: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA).

In the 1951 science fiction film, “The Day the Earth Stood Still,” powerful ray guns are shown vaporizing rifles and even tanks. In the Star Wars movies, a wide variety of directed energy weapons are depicted, from handheld lightsabers to massive, spaceship-mounted laser cannons.

What exactly is a directed energy weapon? Are these weapons still science fiction, lab experiments, or are they real? How can they be used and how disruptive can they be? What are the challenges and next steps? This article will examine answers to these questions.

According to DOD’s Joint Publication 3–13 Electronic Warfare, directed energy (DE) is described as an:

An international team of researchers has detected a series of significant X-ray oscillations near the innermost orbit of a supermassive black hole – an unprecedented discovery that could indicate the presence of a nearby stellar-mass orbiter such as a white dwarf.

Optical outburst

The Massachusetts Institute of Technology (MIT)-led team began studying the extreme supermassive black hole 1ES 1927+654 – located around 270 million light years away and about a million times more massive than the Sun – in 2018, when it brightened by a factor of around 100 at optical wavelengths. Shortly after this optical outburst, X-ray monitoring revealed a period of dramatic variability as X-rays dropped rapidly – at first becoming undetectable for about a month, before returning with a vengeance and transforming into the brightest supermassive black hole in the X-ray sky.

Researchers from Nagoya University in Japan and the Slovak Academy of Sciences have unveiled new insights into the interplay between quantum theory and thermodynamics. The team demonstrated that while quantum theory does not inherently forbid violations of the second law of thermodynamics, quantum processes may be implemented without actually breaching the law.

This discovery, published in npj Quantum Information, highlights a harmonious coexistence between the two fields, despite their logical independence. Their findings open up new avenues for understanding the thermodynamic boundaries of quantum technologies, such as and nanoscale engines.

This breakthrough contributes to the long-standing exploration of the second law of thermodynamics, a principle often regarded as one of the most profound and enigmatic in physics.

Crowdsourcing treatments that work — yael elish — CEO & founder, stuffthatworks.


Yael Elish is CEO and Founder of StuffThatWorks (https://www.stuffthatworks.health/), a company that offers an online platform where people suffering from chronic diseases can share information to learn which treatments work best for their specific condition, based on the experience of their peers combined with a smart, AI-based crowdsourcing system.

A passionate entrepreneur with expertise in crowdsourcing and consumer-facing products, Yael was on the Waze founding team, where she drove the overall product strategy that led the company from User One to one of the world’s most notable crowdsourcing endeavours. She also co-founded eSnips and NetSnippet, and was part of the senior management team that took Commtouch to its successful NASDAQ IPO in 2000.