Menu

Blog

Page 4992

Mar 12, 2022

New tool allows unprecedented modeling of magnetic nanoparticles

Posted by in categories: biotech/medical, chemistry, computing, nanotechnology

Researchers at North Carolina State University have developed a new computational tool that allows users to conduct simulations of multi-functional magnetic nanoparticles in unprecedented detail. The advance paves the way for new work aimed at developing magnetic nanoparticles for use in applications from drug delivery to sensor technologies.

“Self-assembling , or MNPs, have a lot of desirable properties,” says Yaroslava Yingling, corresponding author of a paper on the work and a Distinguished Professor of Materials Science and Engineering at NC State. “But it has been challenging to study them, because computational models have struggled to account for all of the forces that can influence these materials. MNPs are subject to a complicated interplay between external magnetic fields and van der Waals, electrostatic, dipolar, steric, and .”

Many applications of MNPs require an understanding of how the nanoparticles will behave in complex environments, such as using MNPs to deliver a specific protein or drug molecule to a targeted cancer affected cell using external magnetic fields. In these cases, it is important to be able to accurately model how MNPs will respond to different chemical environments. Previous computational modeling techniques that looked at MNPs were unable to account for all of the chemical interactions MNPs experience in a given colloidal or biological environment, instead focusing primarily on physical interactions.

Mar 12, 2022

NASA opens sample taken from the Moon 50 years on

Posted by in categories: materials, space

The Apollo missions to the Moon brought a total of 2,196 rock samples to Earth. But NASA has only just started opening one of the last ones, collected 50 years ago.

For all that time, some tubes were kept sealed so that they could be studied years later, with the help of the latest technical breakthroughs.

NASA knew “science and technology would evolve and allow scientists to study the material in new ways to address new questions in the future,” Lori Glaze, director of the Planetary Science Division at NASA Headquarters, said in a statement.

Mar 12, 2022

DeepMind’s Work on Abstract Reasoning and an IQ Test for Deep Learning

Posted by in category: robotics/AI

A recent paper tries to quantify the ability of neural networks to generalized abstract concepts.

Mar 12, 2022

Teleportation Is Real, and It is Going To Change The World!

Posted by in categories: biotech/medical, Elon Musk, space travel

What if you could travel to the country of your choice in just 1 click? If that was possible, your train of thought would be, Let’s go to Switzerland, no Iceland…you know what, let’s go everywhere. Teleportation is a common part of science fiction characters but is it achievable?

The pandemic has been hard on us and forced us to step out only when it is absolutely necessary. But you know what, Teleportation can be the perfect thing for you. And Earth is not the limit, you can put on a suit and some oxygen cylinder and you can just teleport to the moon…Elon Musk, you there?😃

But as far as we know, everyone told us while watching science fiction, this is not possible but you know what they are not entirely correct.

Mar 12, 2022

Top 25 Most Promising AI Startups in 2021

Posted by in category: robotics/AI

Artificial intelligence is making its significance in most of the major sectors these days. The top AI startups are making a buzz in the market that has the potential to revolutionize the world. There are thousands of AI startups available today and this blog will share some of the most promising AI Startups that are making waves in the AI technology field.

Before jumping into sharing about these startups, let’s understand what area of field AI is contributing to. Mentioned below are some of the major fields where AI is contributing and bringing a change.

Mar 12, 2022

Inside NASA’s Bold Proposal to Probe the Mysteries of Dark Matter

Posted by in categories: cosmology, physics

Two scientists as different as could be — one a bookish astrophysicist who formerly served as NASA’s chief scientist, the other a charismatic mathematician who moonlights as a painter — have teamed up to unlock the secrets of dark matter.

From his Washington, DC office at NASA headquarters, Dr. Jim Green admitted that although he retired as NASA’s top scientist in January, he was already back as a consultant. He told Futurism the story of meeting up with his friend, Yeshiva University mathematician Ed Belbruno, when the latter invited the former to speak at the University of Augsburg in Germany.

Over lunch, they got to talking about the Pioneer Anomaly, the astrophysics-speak term for the bizarre slowing down effect witnessed by Pioneers 10 and 11. One thing led to another, and the pair soon found themselves with a long shot concept for an “Interstellar Probe” mission that they say could gather unprecedented data about dark matter and its place in the cosmos.

Mar 12, 2022

Acoustically driven microrobot outshines natural microswimmers

Posted by in categories: biotech/medical, robotics/AI

Researchers at the Max Planck Institute for Intelligent Systems in Stuttgart have designed and fabricated an untethered microrobot that can slip along either a flat or curved surface in a liquid when exposed to ultrasound waves. Its propulsion force is two to three orders of magnitude stronger than the propulsion force of natural microorganisms such as bacteria or algae. Additionally, it can transport cargo while swimming. The acoustically propelled robot hence has significant potential to revolutionize the future minimally invasive treatment of patients.

Stuttgart—Researchers at the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart developed a bullet-shaped, synthetic miniature robot with a diameter of 25 micrometers, which is acoustically propelled forward—a speeding bullet, in the truest sense of the word. Less than the diameter of a human hair in size, never before has such an actuated microrobot reached this speed. Its is so efficient it even outperforms the swimming capabilities of natural microorganisms.

The scientists designed the 3D-printed polymer microrobot with a spherical cavity and a small tube-like nozzle towards the bottom (see figure 1). Surrounded by liquid such as water, the cavity traps a spherical air bubble. Once the robot is exposed to acoustic waves of around 330 kHz, the air bubble pulsates, pushing the liquid inside the tube towards the back end of the microrobot. The liquid’s movement then propels the bullet forward quite vigorously at up to 90 body lengths per second. That is a thrust force two to three orders of magnitude stronger than those of natural microorganisms such as algae or bacteria. Both are among the most efficient microswimmers in nature, optimized by evolution.

Mar 12, 2022

Faster analog computer could be based on mathematics of complex systems

Posted by in categories: mathematics, quantum physics, supercomputing

Researchers have proposed a novel principle for a unique kind of computer that would use analog technology in place of digital or quantum components.

The unique device would be able to carry out complex computations extremely quickly—possibly, even faster than today’s supercomputers and at vastly less cost than any existing quantum computers.

The principle uses to overcome the barriers in optimization problems (choosing the best option from a large number of possibilities), such as Google searches—which aim to find the optimal results matching the search request.

Mar 12, 2022

Researchers develop hybrid human-machine framework for building smarter AI

Posted by in categories: biotech/medical, information science, mathematics, robotics/AI

From chatbots that answer tax questions to algorithms that drive autonomous vehicles and dish out medical diagnoses, artificial intelligence undergirds many aspects of daily life. Creating smarter, more accurate systems requires a hybrid human-machine approach, according to researchers at the University of California, Irvine. In a study published this month in Proceedings of the National Academy of Sciences, they present a new mathematical model that can improve performance by combining human and algorithmic predictions and confidence scores.

“Humans and machine algorithms have complementary strengths and weaknesses. Each uses different sources of information and strategies to make predictions and decisions,” said co-author Mark Steyvers, UCI professor of cognitive sciences. “We show through empirical demonstrations as well as theoretical analyses that humans can improve the predictions of AI even when human accuracy is somewhat below [that of] the AI—and vice versa. And this accuracy is higher than combining predictions from two individuals or two AI algorithms.”

To test the framework, researchers conducted an image classification experiment in which human participants and computer algorithms worked separately to correctly identify distorted pictures of animals and everyday items—chairs, bottles, bicycles, trucks. The human participants ranked their confidence in the accuracy of each image identification as low, medium or high, while the machine classifier generated a continuous score. The results showed large differences in confidence between humans and AI algorithms across images.

Mar 12, 2022

Better memristors for brain-like computing

Posted by in categories: materials, robotics/AI

Scientists are getting better at making neurone-like junctions for computers that mimic the human brain’s random information processing, storage and recall. Fei Zhuge of the Chinese Academy of Sciences and colleagues reviewed the latest developments in the design of these “memristors” for the journal Science and Technology of Advanced Materials.

Computers apply artificial intelligence programs to recall previously learned information and make predictions. These programs are extremely energy-and time-intensive: typically, vast volumes of data must be transferred between separate memory and processing units. To solve this, researchers have been developing hardware that allows for more random and simultaneous information transfer and storage, much like the human brain.

Electronic circuits in these “neuromorphic” computers include memristors that resemble the synaptic junctions between neurones. Energy flows through a material from one to another, much like a neurone firing a signal across the synapse to the next neurone. Scientists are now finding ways to better tune this intermediate material so the is more stable and reliable.