Menu

Blog

Page 4965

Jul 6, 2022

Temperature-resistant power semiconductors from a 3D printer

Posted by in categories: 3D printing, computing

Researchers at the Professorship of Electrical Energy Conversion Systems and Drives at Chemnitz University of Technology have succeeded for the first time in 3D printing housings for power electronic components that are used, for example, to control electrical machines. During the printing process, silicon carbide chips are positioned at a designated point on the housing.

As with the printed motor made of iron, copper and ceramics, which the professorship first presented at the Hannover Messe in 2018, ceramic and metallic pastes are also used in the 3D of housings. “These are sintered after the , together—and this is what makes them special—with the imprinted ,” says Prof. Dr. Ralf Werner, head of the Professorship of Electrical Energy Conversion Systems and Drives. Ceramic is used as an and copper is used for contacting the gate, drain and source areas of the field-effect transistors. “Contacting the gate area, which normally has an edge length of less than one millimeter, was particularly challenging,” adds Prof. Dr. Thomas Basler, head of the Professorship of Power Electronics, whose team supported the project with initial functional tests on prototypes.

Following the ceramic-insulated coils printed at Chemnitz University of Technology, which were presented at the Hannover Messe in 2017, and the printed motor, drive components that can withstand temperatures above 300 °C are now also available. “The desire for more temperature-resistant power electronics was obvious, because the housings for power are traditionally installed as close as possible to the engine and should therefore have an equally high temperature resistance,” says Prof. Werner.

Jul 6, 2022

Harvard Researchers Have Solved a Perplexing Cancer Mystery

Posted by in categories: biotech/medical, economics, genetics

For many years, the human genome was seen as a book of life, with passages of remarkable eloquence and economy of expression intermingled with long stretches of nonsense. The readable areas carried the instructions for producing cell proteins; the other regions, which accounted for around 90% of the overall genome, were disregarded as junk DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Jul 6, 2022

Astronauts on Space Station Explore Artificial Intelligence and Human Nervous System

Posted by in categories: government, physics, robotics/AI, space

On Tuesday, July 5, space physics and human studies dominated the science agenda aboard the International Space Station. The Expedition 67 crew also reconfigured a US airlock and put a new 3D printer through its paces.

The lack of gravity in space impacts a wide range of physics revealing new phenomena that researchers are studying to improve life for humans on and off the Earth. One such project uses artificial intelligence to adapt complicated glass manufacturing processes in microgravity with the goal of benefitting numerous Earth-and space-based industries. On Tuesday afternoon, NASA

Established in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is “To discover and expand knowledge for the benefit of humanity.” Its core values are “safety, integrity, teamwork, excellence, and inclusion.”

Jul 6, 2022

The Spooky Quantum Phenomenon You’ve Never Heard Of

Posted by in categories: computing, information science, particle physics, quantum physics

But Cabello and others are interested in investigating a lesser-known but equally magical aspect of quantum mechanics: contextuality. Contextuality says that properties of particles, such as their position or polarization, exist only within the context of a measurement. Instead of thinking of particles’ properties as having fixed values, consider them more like words in language, whose meanings can change depending on the context: “Time flies like an arrow. Fruit flies like bananas.”

Although contextuality has lived in nonlocality’s shadow for over 50 years, quantum physicists now consider it more of a hallmark feature of quantum systems than nonlocality is. A single particle, for instance, is a quantum system “in which you cannot even think about nonlocality,” since the particle is only in one location, said Bárbara Amaral, a physicist at the University of São Paulo in Brazil. “So [contextuality] is more general in some sense, and I think this is important to really understand the power of quantum systems and to go deeper into why quantum theory is the way it is.”

Researchers have also found tantalizing links between contextuality and problems that quantum computers can efficiently solve that ordinary computers cannot; investigating these links could help guide researchers in developing new quantum computing approaches and algorithms.

Jul 6, 2022

Novel quantum simulation method clarifies correlated properties of complex material 1T —TaS2

Posted by in categories: particle physics, quantum physics

A team led by Philipp Werner, professor of physics at the University of Fribourg and leader of NCCR MARVEL’s Phase 3 project Continued Support, Advanced Simulation Methods, has applied their advanced quantum simulation method to the investigation of the complex material 1T-TaS2. The research, recently published in Physical Review Letters, helped resolve a conflict between earlier experimental and theoretical results, showing that the surface region of 1T-TaS2 exhibits a nontrivial interplay between band insulating and Mott insulating behavior when the material is cooled to below 180 k.

1T-TaS2 is a layered transition metal dichalcogenide that has been studied intensively for decades because of intriguing links between temperature dependent distortions in the lattice and phenomena linked to electronic correlations.

Upon cooling, the material undergoes a series of lattice rearrangements with a simultaneous redistribution of the electronic density, a phenomenon known as charge density wave (CDW) order. In the reached when the material is cooled to below 180 k, an in-plane periodic lattice distortion leads to the formation of star-of-David (SOD) clusters made of 13 tantalum atoms. Simultaneously, a strong increase in resistivity is observed. Additional interesting properties of the low temperature phase include a transition to a under pressure as well as the possibility to switch this phase into long-lived metallic metastable phases by applying short pulses of laser or voltage, making the material potentially interesting for use in future memory devices.

Jul 6, 2022

Beyond a CRISPR treatment’s encouraging results, some scientists see a need for more data on risk

Posted by in categories: biotech/medical, genetics

What happens when you CRISPR people?

Few questions generated more contentious discussion in biotech in the mid-2010s, as researchers and executives debated the relative merits of preclinical studies that pointed both to the new gene-editing tool’s potential to cure numerous diseases and its potential to cause unintended genetic damage.

Jul 6, 2022

State of the art for Europe’s demonstration fusion power plant

Posted by in categories: futurism, nuclear energy

The European research consortium EUROfusion has announced the start of a five-year conceptual design phase for its demonstration fusion power plant DEMO, capable of net electricity production, shortly after the middle of the century in its Roadmap to Fusion Energy.

The first-of-its-kind facility represents the next technological step after the global ITER fusion experiment. It aims to demonstrate the net production of 300 to 500 megawatt of electricity generated by nuclear fusion, clean and safe energy, as well as essential technologies such as remote maintenance and tritium breeding. The tritium breeding technology will allow operators to produce the tritium fusion fuel on-site is a crucial requirement not just for DEMO but also for any future fusion power device to follow ITER.

Fusion is the process that powers stars like our Sun and promises an inherently safe and nearly unlimited long-term clean energy source here on Earth. Fusion energy will generate immense amounts of energy from just a few grams of the abundant fuels found all over the world.

Jul 6, 2022

How Quantum Computing is Creating an Impact on Artificial Intelligence

Posted by in categories: quantum physics, robotics/AI

The advanced global tech market is set to experience the effect of quantum computing on artificial intelligence in 2022 and beyond. It is essential to integrate quantum computing into artificial intelligence models to boost decision-making abilities more efficiently.

Jul 6, 2022

Machines with Minds? The Lovelace Test vs. the Turing Test

Posted by in category: robotics/AI

Selmer Bringsjord, and his colleagues have proposed the Lovelace test as a substitute for the flawed Turing test. The test is named after Ada Lovelace.

Bringsjord defined software creativity as passing the Lovelace test if the program does something that cannot be explained by the programmer or an expert in computer code.2 Computer programs can generate unexpected and surprising results.3 Results from computer programs are often unanticipated. But the question is, does the computer create a result that the programmer, looking back, cannot explain?

When it comes to assessing creativity (and therefore consciousness and humanness), the Lovelace test is a much better test than the Turing test. If AI truly produces something surprising which cannot be explained by the programmers, then the Lovelace test will have been passed and we might in fact be looking at creativity. So far, however, no AI has passed the Lovelace test.4 There have been many cases where a machine looked as if it were creative, but on closer inspection, the appearance of creative content fades.

Jul 6, 2022

Why more Planet Labs’ shoebox-sized satellites are headed into orbit on SpaceX rockets

Posted by in category: satellites

Planet Labs uses shoebox-sized satellites to send back real-time images of the Earth every day.