Toggle light / dark theme

This intriguing observation from the NASA/ESA Hubble Space Telescope shows a gravitationally lensed galaxy with the long-winded identification SGAS J143845+145407. Gravitational lensing has resulted in a mirror image of the galaxy near the center of this image, creating a captivating centerpiece. A third distorted image of the galaxy appears as a bridge between them.

Gravitational lensing occurs when the mass of an enormous celestial body – such as a galaxy cluster – curves spacetime and causes the path of light from distant objects to visibly bend around it, as if by a lens. Appropriately, the body causing the light to curve is called a gravitational lens, and the distorted background object is referred to as being “lensed.” Gravitational lensing can result in multiple images of the original galaxy, as seen in this image, or in the background object appearing as a distorted arc or even a ring. Another important consequence of this lensing distortion is magnification, allowing astronomers to observe objects that would otherwise be too far away or be too faint to see.

An apparent scooping turned into something much more valuable.

Before starting their weekend, Rosie Somerville and Marina Pérez-Jiménez decided to quickly check the latest literature. A few minutes later, the lab WhatsApp group was on fire. After months of arduous work on different organometallic complexes, some of them had just been published. What now?

Very often, researchers across the world work on similar developments without knowing about each other’s results. The latest recipients of the Nobel prize for chemistry, Benjamin List and Dave MacMillan, independently developed organocatalysis. But sometimes the science hall of fame works on a first-come, first-served basis. What if someone scoops the discovery?

MIT physicists have significantly amplified quantum changes in atomic vibrations, allowing them to exclude noise from the classical world. This advance may allow them to measure these atomic oscillations, and how they evolve over time, and ultimately hone the precision of atomic clocks and of quantum sensors for detecting dark matter or gravitational waves.

Mesmerising aerial footage has captured a huge swarm of jellyfish off the coast of Israel.

The country’s marine authorities were inspecting the waters of Haifa Bay during the annual jellyfish migration, when its boat was surrounded.

Israel Parks and Nature Authority said that pollution and climate change are increasing the intensity of the jellyfish swarms.

Advances in low power technology are making it easier to create wireless sensor networks in a wide range of applications, from remote sensing to HVAC monitoring, asset tracking and industrial automation. The problem is that even wireless sensors require batteries that must be regularly replaced—a costly and cumbersome maintenance project. A better wireless power solution would be to harvest ambient mechanical, thermal or electromagnetic energy from the sensor’s local environment.

Typically, harvestable ambient power is on the order of tens of microwatts, so energy harvesting requires careful power management in order to successfully capture microwatts of ambient power and store it in a useable energy reservoir. One common form of ambient energy is mechanical vibration energy, which can be caused by motors running in a factory, airflow across a fan blade or even by a moving vehicle. A piezoelectric transducer can be used to convert these forms of vibration energy into electrical energy, which in turn can be used to power circuitry.