Unlike existing treatments that focus on rehabilitation or reducing the risk of an additional stroke, the experimental drug targets the “stickiness” that can prevent injured brain tissue from functioning as it should.
Researchers who previously revived some brain cells in dead pigs succeeded in repeating the process in more organs.
Cold Fusion is possible by replacing Hydrogen Electrons with Muons.
- Takes 5GeV to create a Muon, they only live for 2.2 microseconds.
- Muons provide a catalyst for 150 fusion events, before sticking to Helium Atom.
- Net fusion output is 2.7GeV per 5GeV Muon.
https
Swiss researchers have done the (theoretically) impossible, creating not one but two silicon-based solar cells with efficiencies greater than 30% — breaking a world record and potentially illuminating the path to a future of cheaper clean energy.
The status quo: Solar cells absorb light and convert it into electricity. They’re the basis of most solar power tech, and about 95% of them are made from silicon because it’s abundant, long-lasting, and relatively cheap.
Most of the silicon solar cells sold today are about 22% efficient, meaning they convert 22% of the solar energy that hits them into electricity. We don’t have too much room for improvement with silicon solar cells, either, as they have a theoretical efficiency limit of about 29%.
This post is also available in: עברית (Hebrew)
Imagine knowing the future. Being able to predict what’s going to happen next. It feels that this concept is merely a dream, but in reality, this dream is underway. Modeling and simulation, data analytics, AI and machine learning, distributed systems, social dynamics and human behavior simulation are fast becoming the go-to tools, and their qualities could offer significant advantages for the battlespace of tomorrow.
According to army-technology.com, London-based technology provider Improbable has been working closely with the UK Ministry of Defense (MoD) since 2018 to explore the utility of synthetic environments (SEs) for tactical training and operational and strategic planning. At the core of this work is Skyral, a platform that supports an ecosystem of industry and academia enabling the fast construction of new SEs for almost any scenario using digital entities, algorithms, AI, historic and real-time data.
This may become more common as the number of rockets sent to space increases, an expert said.
With inspiration pulled straight from movies, Carhartt, and even Kanye West, the Airbnb—designed and built by two friends—went viral on TikTok for being anything but your typical weekend away.
The concrete industry is just one of many looking at new manufacturing methods to reduce its carbon footprint. These efforts are essential to fulfilling the Paris Agreement, which asks each of its signees to achieve a net-zero carbon economy by 2050. However, a new study from researchers in Japan and Belgium and focusing exclusively on Japan concludes that improved manufacturing technologies will only get the industry within 80% of its goal. Using a dynamic material flows analysis model, the study claim that the other 20% will have to come from changes in how concrete is consumed and managed, putting expectations on the buyer as well as the seller.
Electric cars, fluorescent lights, water-saving shower heads, these are all examples of efforts to lower our carbon footprint. However, the energy savings are made from the supply side, with companies developing new technologies that reduce the amount of energy consumed for the same amount of use. Notably, they put little demand on the user, who can use the product no differently than before.
The same holds true for concrete, the most consumed human-made material in the world. Many studies have shown the potential for making the concrete industry more energy efficient through esoteric efforts like “clinker-to-cement ratio reduction,” “cement substitution with alternative binders,” and “carbon capture and utilization.” The problem, explains Dr. Takuma Watari, a researcher at the Japan National Institute for Environmental Studies and lead of the new study, is that supply-side efforts are not enough if nations are serious about achieving net-zero carbon emissions.
Equally important is the emphasis that RVS puts on its own off-the-shelf thermal vacuum systems. Put another way, that means thermal testing at a palatable price-point while also ensuring that ease-of-use is paramount. “In responding to our call for proposals, RVS was competitive on price and delivered versus desired functionality,” notes Manny Montoya, CAAO technical manager, who heads up a diverse team of engineers, technicians and machinists supporting the research of Douglas and other astronomers at Steward Observatory.
Experimental evidence for exceptional thermal conductivity and hole mobility in cubic boron arsenide raises hopes for future applications.