Toggle light / dark theme

DoD has already funded Starship Cargo concepts studies and is interested in a troop rocket! Will we have SpaceX Starship Troopers? I look into what DoD is interested in, why the one hour mission just is not going to happen, alternatives and a concept for a launch on demand system. Be sure to watch to the end to catch that fun concept!
For gardening in your Lunar habitat Galactic Gregs has teamed up with True Leaf Market to bring you a great selection of seed for your planting. Check it out: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K
Awesome deals for long term food supplies for those long missions to deep space (or prepping in case your spaceship crashes: See the Special Deals at My Patriot Supply: www.PrepWithGreg.com.

Circa 2019


This study assessed the safety and efficacy of deep tissue laser therapy on the management of pain, functionality, systemic inflammation, and overall quality of life of older adults with painful diabetic peripheral neuropathy.

The effects of deep tissue laser therapy (DTLT) were assessed in a randomized, double-masked, sham-controlled, interventional trial. Forty participants were randomized (1:1) to receive either DTLT or sham laser therapy (SLT). In addition to the standard-of-care treatment, participants received either DTLT or SLT twice weekly for 4 weeks and then once weekly for 8 weeks (a 12-week intervention period). The two treatments were identical, except that laser emission was disabled during SLT. Assessments for pain, functionality, serum levels of inflammatory biomarkers, and quality of life (QOL) were performed at baseline and after the 12-week intervention period. The results from the two treatments were compared using ANOVA in a pre-test-post-test design.

All participants randomized to the DTLT group and 85% (17 of 20) of participants randomized to the SLT group completed the trial. No significant differences in baseline characteristics between the groups were observed. After the 12-week intervention period, pain levels significantly decreased in both groups and were significantly lower in the DTLT group than in the SLT group. The Timed Up and Go test times (assessing functionality) were significantly improved in both groups and were 16% shorter in the DTLT group than in the SLT group. Serum levels of IL-6 decreased significantly in both groups. Additionally, serum levels of MCP-1 decreased significantly in the DTLT group but not in the SLT group. Patients’ quality of life improved significantly in the DTLT group but not in the SLT group.

An aerial view of the NELHA facilities in Kona, Hawaii. Makai has installed undersea pipelines that descend to 915 m (3,002 ft) water depth at a temperature of 4° C (39° F).

Seawater Air Conditioning (SWAC) takes advantage of available deep cold water from the ocean, a river, or lake, to replace conventional AC systems. Such a system can also utilize cold lake or river water as the cold source.

Are we alone?


We are two scientists who study exoplanets and astrobiology. Thanks in large part to next-generation telescopes like Webb, researchers like us will soon be able to measure the chemical makeup of atmospheres of planets around other stars. The hope is that one or more of these planets will have a chemical signature of life.

Life might exist in the Solar System where there is liquid water — like the subsurface aquifers on Mars or in the oceans of Jupiter’s moon Europa. However, searching for life in these places is incredibly difficult, as they are hard to reach, and detecting life would require sending a probe to return physical samples.

Many astronomers believe there’s a good chance that life exists on planets orbiting other stars, and it’s possible that’s where life will first be found.

The July issue of Scientific American magazine has a terrific review of the Voyager space mission that details the trips Voyagers 1 and 2 have made through the Solar System. The article is titled “Record-Breaking Voyager Spacecraft Begin to Power Down.” Both spacecraft have now entered interstellar space and are the first human artifacts to do so. Tim Folger wrote the article for Scientific American. Towards the end of the article, Folger points out that Voyagers 1 and 2 were designed before the advent of the microprocessor and that the mission has lasted 44 years, so far, which is about 40 years longer than the planned design life for the spacecraft.

The article then quotes Stamatios Krimigis, a PhD physicist and space scientist who’s spent more than half a century at the Johns Hopkins Applied Physics Laboratory. Krimigis says, “The amount of software on these instruments is slim to none. On the whole, I think the mission lasted so long because almost everything was hardwired. Today’s engineers don’t know how to do this. I don’t know if it’s even possible to build such a simple spacecraft [now]. Voyager is the last of its kind.”

This week our guest academic philosopher, Susan Schneider, who is the founding director for the Center for the Future Mind at Florida Atlantic University, as well as the author of the 2019 book, Artificial You: AI and the Future of Your Mind. In this episode we focus heavily on Susan’s thoughts, hopes, and concerns surrounding the current conversations regarding artificial intelligence. This includes, but is certainly not limited to, the philosophical and ethical questions that AI presents in general, the feasibility of mind uploading and machine consciousness, the ways we may end up outsourcing our decision making to machines, how we might merge with machines, and how these potential tech futures might impact identity and sense of self. You can learn more about Susan at schneiderwebsite.com, and find out how to get involved with her work at fau.edu/future-mind ** Host: Steven Parton — LinkedIn / Twitter Music by: Amine el Filali.

41 MINS