Toggle light / dark theme

Energy, mass, velocity. These three variables make up Einstein’s iconic equation E=MC2. But how did Einstein know about these concepts in the first place? A precursor step to understanding physics is identifying relevant variables. Without the concept of energy, mass, and velocity, not even Einstein could discover relativity. But can such variables be discovered automatically? Doing so could greatly accelerate scientific discovery.

This is the question that researchers at Columbia Engineering posed to a new AI program. The program was designed to observe through a , then try to search for the minimal set of fundamental variables that fully describe the observed dynamics. The study was published on July 25 in Nature Computational Science.

The researchers began by feeding the system raw video footage of phenomena for which they already knew the answer. For example, they fed a video of a swinging double pendulum known to have exactly four “state variables”—the angle and of each of the two arms. After a few hours of analysis, the AI produced the answer: 4.7.

Researchers from the University of Michigan Rogel Cancer Center, studying the molecular landscape of over 500 patients with an aggressive form of multiple myeloma, discovered a prevalence of activated key oncogenic pathways in these patients, much more than previously thought. Upwards of 45–65% of NF-κB and RAS/MAPK pathways each had alterations. The study was published in Nature Communications.

Further, Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology, and his team found a link between mutations and RASopathies, a certain group of genetic syndromes, in patients with relapsed treatment-resistant . This was the first observation of its kind.

The team compared the molecular makeup of patients with untreated multiple myeloma to those with the relapsed treatment-resistant version of the disease. Comparing these patients allowed researchers to describe drivers of the more aggressive form of multiple myeloma.

University of Iowa researchers have confirmed in a new study that a specific region in the brain is critical to governing the mind’s communication with the body’s motor control system. The findings could yield advances in treatment for Parkinson’s disease, as declining motor coordination is a central symptom of the disorder.

In experiments with humans, the researchers pinpointed the as the region in the that communicates with the motor system to help the body stop an action. This communication is vital because it helps humans avoid surprises and react to potentially dangerous or unforeseen circumstances.

The subthalamic nucleus is a tiny grouping of cells that is part of the , which is a key circuit in controlling movement. The basal ganglia takes initial motor commands generated in the brain and either amplify or halt specific parts of those commands as they pass from the central nervous system to the spinal cord.

Observational studies of the relationship between alcohol use and telomere length have produced conflicting results. The largest such study to date, of 4,567 individuals, found no association between alcohol intake and either baseline or longitudinal change in telomere length [9]. Another analysis of two American cohorts (n = 2623) also reported null findings [10]. On the other hand, a few small studies (sample size range: 255‑1800) have observed associations with heavy drinking or AUD. Participants with AUD have been reported to have shorter telomeres compared to healthy controls [11]. A longitudinal study of Helsinki businessmen observed that higher midlife alcohol consumption was associated with shorter telomere length in older age [8]. Drinking 30 g/day of alcohol in older participants was associated with shorter telomeres in a Korean study [12]. Associations were stronger in those experiencing the alcohol flush reaction, raising the intriguing possibility that acetaldehyde, ethanol’s toxic breakdown product, is mechanistically involved. In a recent review of 27 studies, 10 showed significant associations between alcohol use and telomere length [13]. The studies included cross-sectional and longitudinal designs. The majority comprised European participants with ages ranging from the third to seventh decade. Most studies observed positive associations between alcohol and LTL. However heterogeneity between studies in methods of quantifying telomere length and categorizing alcohol intake hindered meta-analysis and aggregation of the data.

MR seeks to identify potentially causal determinants of an outcome. It estimates the association between genetically predicted levels of an exposure and an outcome of interest. Residual confounding and reverse causation aim to be less of a concern than in most other methods of analyzing observational data [14]. With MR, genetic proxies can be used to study the effects of genetically-predicted variability in alcohol consumption or AUD risk. To our knowledge, no MR study of alcohol and telomere length has yet been attempted.

We conducted a large observational study of two alcohol phenotypes, alcohol consumption and AUD, and leucocyte. We then performed linear MR analyses to investigate the evidence for a causal effect between alcohol consumption/AUD and LTL. Estimates generated by our observational and genetic methods were compared. Genetic distinction between different alcohol use traits motivates their separate analysis. Quantity/frequency measures such as drinks per week and AUDIT-C (Alcohol Use Disorders Identification Test Consumption, a 3 item screening tool), while moderately genetically correlated with AUD, have distinct patterns of genetic correlation with other traits [13]. Furthermore, as there has been much speculation about potential J-shaped relationships between alcohol and health outcomes [15], we performed a non-linear MR analysis to examine the shape of the relationship between alcohol consumption and telomere length.

Multiple ways to stop hypersonic missiles with current (non hypersonic) technology.

Awesome deals for long term food supplies for those long missions to deep space (or prepping in case your spaceship crashes: See the Special Deals at My Patriot Supply: www.PrepWithGreg.com.

For gardening in your Lunar habitat Galactic Gregs has teamed up with True Leaf Market to bring you a great selection of seed for your planting. Check it out: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K

A chess-playing robot fractured the finger of its 7-year-old opponent during a tournament in Moscow last week.

The incident happened after the boy hurried the artificial intelligence-powered robot, the president of the Moscow Chess Federation told the Russian state news agency Tass. “The robot broke the child’s finger — this, of course, is bad,” Sergey Lazarev said.

Video of the incident, which occurred at the Moscow Chess Open competition Tuesday, went viral on social media after a post by the local outlet Baza News.

The Expedition 67 crewmembers aboard the International Space Station spent Tuesday predominantly on research, maintenance, and cargo transfer operations.

Research beneficial to humans on Earth and future crews in space is happening around the clock aboard the orbiting laboratory. NASA Flight Engineer Kjell Lindgren used a majority of his day to service samples for the Immunosenescence investigation inside the Life Science Glovebox. Results from this study may one day inform treatments for accelerated aging processes commonly observed in microgravity and contribute to countermeasures for normal aging progression.

Figuring out what’s going on in the brain is generally considered to be somewhere between extremely difficult and impossible. One major challenge is that the best ways to do so are room-sized machines relegated to hospitals — but brain.space is hoping that its portable, powerful and, most importantly, user-friendly EEG helmet could power new applications and treatments at home and, as a sort of cork pop for its debut, in space.

Electroencephalography, or EEG, is an established method for monitoring certain signals the brain produces. An EEG can indicate which areas of the cortex are active, whether the user is concentrating, agitated, and so on. It’s not nearly as precise as an MRI, but all you need for an EEG is a set of electrical contacts on the scalp, while an MRI machine is huge, loud and incredibly expensive.

There’s been precious little advancement in EEG tech, though, and it’s often done more or less the same way it was done decades ago. Recently, that’s begun to change with devices like Cognixion’s, which uses re-engineered EEG to interpret specific signals with the goal of allowing people with motor impairments to communicate.