Menu

Blog

Page 493

Jul 9, 2024

Mini “Chariots” Steered by Algae Could Assist Environmental Research

Posted by in categories: energy, engineering, transportation

Researchers have created tiny, vehiclelike structures which can be maneuvered by microscopic algae. The algae are caught in baskets attached to the micromachines, which have been carefully designed to allow them enough room to continue swimming. Two types of vehicles were created: the “rotator,” which spins like a wheel, and the “scooter,” which was intended to move in a forward direction but in tests moved more surprisingly. The team is planning to try different and more complex designs for their next vehicles. In the future, these mini algae teams could be applied to assist with micro-level environmental engineering and research.

You’ve likely heard of horsepower, but how about algae power? Like a sled drawn by a team of dogs or a plough pulled by oxen, researchers have created microscopic machines which can be moved by lively, tiny, single-celled green algae.

“We were inspired to try and harness Chlamydomonas reinhardtii, a very common algae found all over the world, after being impressed by its swift and unrestricted swimming capabilities,” said Naoto Shimizu, a student from the Graduate School of Information Science and Technology at the University of Tokyo (at the time of the study), who initiated the project. “We’ve now shown that these algae can be trapped without impairing their mobility, offering a new option for propelling micromachines which could be used for engineering or research purposes.”

Jul 9, 2024

Better understanding of wave propagation processes could boost 5G and 6G networks

Posted by in categories: biotech/medical, internet, robotics/AI, virtual reality

Researchers from the Smart and Wireless Applications and Technologies Group (SWAT-UGR) have conducted two scientific studies aimed at answering a common question: understanding how electromagnetic waves propagate in the medium.

The increase in network speed opens the door to new possibilities, such as robotic surgery or virtual reality services.

A team of UGR researchers has examined the propagation of electromagnetic waves with the goal of enhancing the deployment of 5G and 6G networks. Additionally, the study results contribute to the development of Industry 4.0, which seeks to automate processes in factories using wireless technologies.

Jul 9, 2024

This Tiny Particle Could Upend Everything We Know About Gravity—And the Universe—Scientists Say

Posted by in categories: cosmology, particle physics, quantum physics

A scientific breakthrough on the tiniest scale could soon help us answer the universe’s greatest mysteries.

Jul 9, 2024

Huge neutrino detector sees first hints of particles from exploding stars

Posted by in categories: cosmology, particle physics

Kamiokande-II saw the first supernova neutrinos from the famous SN 1987A.


Every few seconds, somewhere in the observable Universe, a massive star collapses and unleashes a supernova explosion. Japan’s Super-Kamiokande observatory might now be collecting a steady trickle of neutrinos from those cataclysms, physicists say — amounting to a few detections a year.

These tiny subatomic particles are central to understanding what goes on inside a supernova: because they zip out of the star’s collapsing core and across space, they can provide information about any potentially new physics that occur under extreme conditions.

Continue reading “Huge neutrino detector sees first hints of particles from exploding stars” »

Jul 9, 2024

Novel ‘kill-switch’ nanorobot selectively kills cancer cells

Posted by in categories: biotech/medical, robotics/AI

Researchers have developed a pH-responsive nanorobot system that changes confirmation in the tumor microenvironment to selectively kill cancer cells in mice.

Researchers at the Karolinska Institutet (Stockholm, Sweden) have recently developed a nanorobot system capable of killing cancer cells in mice. This system works by activating at lower pH, such as within the tumor microenvironment. It is hoped that this could serve as a proof-of-concept for similar stimulus-responsive nanorobotic approaches and introduce a new range of effective cancer therapeutics.

Certain membrane proteins capable of inducing apoptosis, a type of cell death, appear on the surface of both healthy and cancer cells. These proteins, often called death receptors, join and activate when in close proximity to each other. This closeness is induced by external factors binding to the cell surface.

Jul 9, 2024

Intel begins groundwork on Magdeburg chip fab despite 13 remaining regulatory and environmental objections

Posted by in category: computing

Fab 29.1 and Fab 29.2 will span roughly 81,000 square meters, with a combined length of 530 meters and a width of 153 meters. Including roof structures for air conditioning and heating, the buildings will reach a height of 36.7 meters, with several underground floors as well. The cross-section plans show multiple above-ground floors with heights ranging from 5.7 to 6.5 meters.

Initially, construction of Intel’s Fab 29 was scheduled to begin in the first half of 2023, but delays in subsidy approvals pushed the start to the summer of 2024. Recently it turned out that construction of Intel’s Fab 29 modules 1 and 2 near Magdeburg, Germany, has been delayed to May 2025 due to the pending approval of EU subsidies and the requirement to relocate black soil for reuse at another site.

Intel’s Fab 29 modules 1 and 2 were initially scheduled to start operations in late 2027 and make chips on Intel’s 14A (1.4nm) and 10A (1nm) production nodes. Typically, Intel launches new client PC products in the second half of the year and ramps up production in the first half. The fabs were intended to produce client PC products set for release in the second half of 2028. Although production could begin if the fabs were ready by mid-2028, the timeline would be tight. However, some of the latest reports indicate a different schedule, estimating four to five years for construction, with production now expected to start between 2029 and 2030.

Jul 9, 2024

Putting Black Holes Inside Stuff | Dead Planets Society Podcast

Posted by in categories: asteroid/comet impacts, cosmology, existential risks, physics

Primordial black holes are tiny versions of the big beasts you typically think of. They’re so small, they could easily fit inside stuff, like a planet, or a star… or a person. So, needless to say, this has piqued the curiosity of our Dead Planeteers.

Leah and Chelsea want to know, can you put primordial black holes inside things and what happens if you do?

Continue reading “Putting Black Holes Inside Stuff | Dead Planets Society Podcast” »

Jul 9, 2024

NASA’s Roman Mission Gets Cosmic ‘Sneak Peek’ From Supercomputers

Posted by in categories: space, supercomputing

Researchers used supercomputers to create nearly 4 million simulated images depicting the cosmos.

Researchers are diving into a synthetic universe to help us better understand the real one. Using supercomputers at the U.S. DOE’s (Department of Energy’s) Argonne National Laboratory in Illinois, scientists have created nearly 4 million simulated images depicting the cosmos as NASA’s Nancy Grace Roman Space Telescope and the Vera C. Rubin Observatory, jointly funded by NSF (the National Science Foundation) and DOE, in Chile will see it.

Michael Troxel, an associate professor of physics at Duke University in Durham, North Carolina, led the simulation campaign as part of a broader project called OpenUniverse. The team is now releasing a 10-terabyte subset of this data, with the remaining 390 terabytes to follow this fall once they’ve been processed.

Jul 9, 2024

Breakthrough in Next-Generation Memory Technology!

Posted by in categories: materials, robotics/AI

A research team led by Professor Jang-Sik Lee from the Department of Materials Science and Engineering and the Department of Semiconductor Engineering at Pohang University of Science and Technology (POSTECH) has significantly enhanced the data storage capacity of ferroelectric memory devices. By utilizing hafnia-based ferroelectric materials and an innovative device structure, their findings, published on June 7 in the international journal Science Advances, mark a substantial advancement in memory technology.

With the exponential growth in data production and processing due to advancements in electronics and artificial intelligence (AI), the importance of data storage technologies has surged. NAND flash memory, one of the most prevalent technologies for mass data storage, can store more data in the same area by stacking cells in a three-dimensional structure rather than a planar one. However, this approach relies on charge traps to store data, which results in higher operating voltages and slower speeds.

Recently, hafnia-based ferroelectric memory has emerged as a promising next-generation memory technology. Hafnia (Hafnium oxide) enables ferroelectric memories to operate at low voltages and high speeds. However, a significant challenge has been the limited memory window for multilevel data storage.

Jul 9, 2024

Tesla’s Innovative Patent for Cyber Cab Raises Privacy Concerns

Posted by in categories: innovation, privacy, robotics/AI

Herbert Ong Brighter with Herbert.

Page 493 of 11,915First490491492493494495496497Last