Toggle light / dark theme

Artificial Intelligence (AI) is rapidly changing the world. Emerging technologies on a daily basis in AI capabilities have lead to a number of innovations including autonomous vehicles, self-driving flights, robotics, etc. Some of the AI technologies feature predictions on future and accurate decision-making. AI is the best friend to technology leaders who want to make the world a better place with unfolding inventions.

Whether humans agree or not, AI developments are slowly impacting all aspects of the society including the economy. However, some technologies might even bring challenges and risks to the working environment. To keep a track on AI development, good leaders head the AI world to ensure trust, reliability, safety and accuracy.

Intelligent behaviour has long been considered a uniquely human attribute. But when computer science and IT networks started evolving, artificial intelligence and people who stood by them were on the spotlight. AI in today’s world is both developing and under control. Without a transformation here, AI will never fully deliver the problems and dilemmas of business only with data and algorithms. Wise leaders do not only create and capture vital economic values, rather build a more sustainable and legitimate organisation. Leaders in AI sectors have eyes to see AI decisions and ears to hear employees perspective.

Summary: The epigenetic clocks of those who indulged in unhealthy behaviors as teens were 1.7 to 3.3 years older than individuals who reported more healthy lifestyles as teens.

Source: eLife.

Biological aging results from damage to cells and tissues in the body that accumulates over time. The results of the study could lead to new ways of identifying young people at risk of developing unhealthy habits that are associated with accelerated biological aging and suggest interventions to prevent poor health outcomes later on.

“You can think of curiosity as a kind of reward which the agent generates internally on its own, so that it can go explore more about its world,” Agrawal said. This internally generated reward signal is known in cognitive psychology as “intrinsic motivation.” The feeling you may have vicariously experienced while reading the game-play description above — an urge to reveal more of whatever’s waiting just out of sight, or just beyond your reach, just to see what happens — that’s intrinsic motivation.

Humans also respond to extrinsic motivations, which originate in the environment. Examples of these include everything from the salary you receive at work to a demand delivered at gunpoint. Computer scientists apply a similar approach called reinforcement learning to train their algorithms: The software gets “points” when it performs a desired task, while penalties follow unwanted behavior.

In an unprecedented experiment, two teams of scientists on either sides of the Atlantic have replicated a material that was previously not produced anywhere on Earth.

As NPR reports, the replication of this powerful compound could have huge implications not just for the manufacturing of high-end machinery, but also for international relations to boot.

Called tetrataenite, the primarily iron-and-nickel compound is normally able to cool for millions of years as it tumbles around in asteroids. As a press release out of the University of Cambridge notes, the researchers who worked in tandem with Boston’s Northeastern University found that if they add phosphorous to the mix, they were able to make synthetic tetrataenite.

Some interpretations of quantum mechanics propose that our entire universe is described by a single universal wave function that constantly splits and multiplies, producing a new reality for every possible quantum interaction. That’s quite a bold statement. So how do we get there?

One of the earliest realizations in the history of quantum mechanics is that matter has a wave-like property. The first to propose this was French physicist Louis de Broglie, who argued that every subatomic particle has a wave associated with it, just like light can behave like both a particle and a wave.

Iran’s priority in entering the Ukrainian war arena was to test NATO’s defenses against its drones, to assess the strength of these defenses in the face of Iranian offensive capabilities. It can be said that in the initial stages, the Shahed-136 drone actually managed to achieve exceptional success against NATO air defense employed by the Ukrainian army. This marks a victory for Tehran.

However, the ultimate evaluation of the Shahed-136 drone’s capability against NATO defenses will have to wait until NATO supplies Ukraine with more air defenses in the days ahead. The implications of these advances for the balance of power between Russian and Ukrainian forces, as well as the reputation of the types of weapons supplied to the Ukrainian military, were certainly realized by NATO’s leadership in the wake of these drone attacks. NATO swiftly rushed to implement additional air defense systems designed to deal with such small, drones that are capable of flying at low altitudes.

As with all armed conflicts, the war in Ukraine is being profited from by a variety of peripheral parties, especially those involved in the sale and manufacture of weapons. Attaining these goals comes with a cost in the form of material losses and casualties brought on by reckless military testing. Russia’s use of Iranian drones during the Ukraine War, which resulted in the destruction of 30% of Ukraine’s power plants without obviously advancing any military objectives is an adequate example.

A new study by Missouri S&T researchers shows how human subjects, walking hand-in-hand with a robot guide, stiffen or relax their arms at different times during the walk. The researchers’ analysis of these movements could aid in the design of smarter, more humanlike robot guides and assistants.

“This work presents the first measurement and analysis of human arm stiffness during overground physical interaction between a robot leader and a human follower,” the Missouri S&T researchers write in a paper recently published in the journal Scientific Reports.

The lead researcher, Dr. Yun Seong Song, assistant professor of mechanical and aerospace engineering at Missouri S&T, describes the findings as “an early step in developing a robot that is humanlike when it physically interacts with a human partner.”