Toggle light / dark theme

Practical and glamorous, aluminium is prized for making products from kitchen foil and beverage cans to Tesla Roadsters and aircraft. But the silvery metal—abundant, cheap, lightweight, and corrosion resistant—has a dark side: red mud. This brownish red slurry, a caustic mishmash of metal-and silicon-rich oxides, often with a dash of radioactive and rare earth elements, is what’s left after aluminum is extracted from ore. And it is piling up. Globally, some 3 billion tons of red mud are now stored in massive waste ponds or dried mounds, making it one of the most abundant industrial wastes on the planet. Aluminum plants generate an additional 150 million tons each year.

Red mud has become trouble looking for a place to happen. In 2010, an earthen dam at one waste pond in Hungary gave way, unleashing a 2-meter-high wall of red mud that buried the town of Ajka, killing 10 people and giving 150 severe chemical burns. (See more on the dangers posed by waste dams.) Even when red mud remains contained, its extreme alkalinity can leach out, poison groundwater, and contaminate nearby rivers and ecosystems. Such liabilities, as well as growing regulatory pressure on industry to develop sustainable practices, have catalyzed global efforts to find ways to recycle and reuse red mud. Some researchers are developing ways to extract the valuable rare earth metals, whereas others turn the mud into cement or bricks.

“There is hope here,” says Yiannis Pontikes, a mechanical engineer at KU Leuven. But economic and marketing hurdles remain, and “the clock is ticking” as regulators consider new controls, says Efthymios Balomenos, a metallurgical engineer at the National Technical University of Athens. “At some point we will not be able to produce waste. So, there is an urgent need to make changes.”

Social robots, robots that can interact with humans and assist them in their daily lives, are gradually being introduced in numerous real-world settings. These robots could be particularly valuable for helping older adults to complete everyday tasks more autonomously, thus potentially enhancing their independence and well-being.

Researchers at University of Bari have been investigating the potential using for ambient assisted living applications for numerous years. Their most recent paper, published in UMAP’22 Adjunct: Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, specifically explores the value of allowing social robots who are assisting seniors to learn the relationships between a user’s routines and his/her .

“Social robots should support with and, at the same time, they should contribute to emotional wellness by considering affective factors in everyday situations,” Berardina De Carolis, Stefano Ferilli and Nicola Macciarulo wrote in their paper. “The main goal of this research is to investigate whether it is possible to learn relations between the user’s affective state state and , made by activities, with the aid of a social robot, Pepper in this case.”

Potential applications include pressure-monitoring bandages, shade-shifting fabrics.


The bright iridescent colors in butterfly wings or beetle shells don’t come from any pigment molecules but from how the wings are structured—a naturally occurring example of what physicists call photonic crystals. Scientists can make their own structural colored materials in the lab, but it can be challenging to scale up the process for commercial applications without sacrificing optical precision.

To efficiently navigate real-world environments, robots typically analyze images collected by imaging devices that are integrated within their body. To enhance the performance of robots, engineers have thus been trying to develop different types of highly performing cameras, sensors and artificial vision systems.

Many artificial systems developed so far draw inspiration from the eyes of humans, animals, insects and fish. These systems have different features and characteristics, depending on the in which they are designed to operate in.

Most existing sensors and cameras are designed to work either in on the ground (i.e., in terrestrial environments) or in (i.e., in ). Bio-inspired artificial vision systems that can operate in both terrestrial and aquatic environments, on the other hand, remain scarce.

One of the primary methods used by malware distributors to infect devices is by deceiving people into downloading and running malicious files, and to achieve this deception, malware authors are using a variety of tricks.

Some of these tricks include masquerading malware executables as legitimate applications, signing them with valid certificates, or compromising trustworthy sites to use them as distribution points.

According to VirusTotal, a security platform for scanning uploaded files for malware, some of these tricks are happening on a much larger scale than initially thought.

Quantum computing, though still in its early days, has the potential to dramatically increase processing power by harnessing the strange behavior of particles at the smallest scales. Some research groups have already reported performing calculations that would take a traditional supercomputer thousands of years. In the long term, quantum computers could provide unbreakable encryption and simulations of nature beyond today’s capabilities.

A UCLA-led interdisciplinary research team including collaborators at Harvard University has now developed a fundamentally new strategy for building these computers. While the current state of the art employs circuits, semiconductors and other tools of electrical engineering, the team has produced a game plan based in chemists’ ability to custom-design atomic building blocks that control the properties of larger molecular structures when they’re put together.

The findings, published last week in Nature Chemistry, could ultimately lead to a leap in quantum processing power.

Photoemisssion orbital tomography extended beyond pi orbitals.


Figure

Experimentally-generated map of copper surface using photoemission orbital tomography (top left) and the projected densities of states of σ and π orbitals (top right). The bianthracene investigated in the study (bottom left) and maps of its σ orbitals (bottom middle, right)

A technique developed for imaging π orbitals during surface chemical reactions – photoemission orbital tomography – can also image σ orbitals as well. The researchers, who tested their discovery by answering a hitherto open question about the product of a reaction, believe the method could unravel chemical mechanisms in fields such as catalysis.

Rob Barnett, a senior clean energy analyst for Bloomberg, forecasts a 30% increase in global PV deployment this year, and double-digit growth through 2025.


Demand is pushing solar growth across the world to new heights, as Bloomberg senior analyst Rob Barnett forecasts deployment to increase by 30% this year. Total global solar deployment is closing in on 1 TW installed – an impressive milestone for the energy transition.

“The global solar picture is just staggering at this point,” Barnett told Yahoo Finance. “We are on track to install something like 250 GW of solar capacity this year.”

China is contributing the largest share to capacity growth this year, with about 108 GW of new operational PV. This is a near-doubling of the roughly 55 GW installed by China last year. The country has the world’s largest exposure to renewable energy, with 323 GW of solar and 338 GW of wind energy. President Xi Jinping aims for 1,200 GW combined by 2030, and the nation is currently ahead of schedule on that goal, said Bloomberg.