Toggle light / dark theme

The newly-discovered neuronal back-up system safeguards metabolic flexibility of neurons to cope with energy demands of electrical signaling, according to a team of researchers from the Center of Physiology and Pharmacology at the Medical University of Vienna.

If one of these systems fails, another one takes over and ensures that sufficient energy is supplied to meet the prevailing requirement.

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE
↓ More info below ↓

The Nobel prize in physics this year went to black holes. Generally speaking. Specifically, it was shared by the astronomers who revealed to us the Milky Way’s central black hole and by Roger Penrose, who proved that in general relativity, every black hole contains a place of infinite gravity — a singularity. But the true impact of Penrose’s singularity theorem would is much deeper — it leads us to the limits Einstein’s great theory and to the origin of the universe.

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

Check out the Space Time Merch Store.

The infrared (IR) spectrum is a vast information landscape that modern IR detectors tap into for diverse applications such as night vision, biochemical spectroscopy, microelectronics design, and climate science. But modern sensors used in these practical areas lack spectral selectivity and must filter out noise, limiting their performance. Advanced IR sensors can achieve ultrasensitive, single-photon level detection, but these sensors must be cryogenically cooled to 4 K (−269 C) and require large, bulky power sources making them too expensive and impractical for everyday Department of Defense or commercial use.

DARPA’s Optomechanical Thermal Imaging (OpTIm) program aims to develop novel, compact, and room-temperature IR sensors with quantum-level performance – bridging the performance gap between limited capability uncooled thermal detectors and high-performance cryogenically cooled photodetectors.

“If researchers can meet the program’s metrics, we will enable IR detection with orders-of-magnitude improvements in sensitivity, spectral control, and response time over current room-temperature IR devices,” said Mukund Vengalattore, OpTIm program manager in DARPA’s Defense Sciences Office. “Achieving quantum-level sensitivity in room-temperature, compact IR sensors would transform battlefield surveillance, night vision, and terrestrial and space imaging. It would also enable a host of commercial applications including infrared spectroscopy for non-invasive cancer diagnosis, highly accurate and immediate pathogen detection from a person’s breath or in the air, and pre-disease detection of threats to agriculture and foliage health.”

We could one day charge our phones and tablets wirelessly through the air, thanks to newly developed technology.

Researchers have used infrared laser light to transmit 400mW of light power over distances of up to 30 meters (98 feet). That’s enough juice to charge small sensors, though in time it could be developed to charge up larger devices such as smartphones too.

All this is done in a way which is perfectly safe – the laser falls back to a low power mode when not in use.