Many countries worldwide are increasingly investing in new infrastructure that enables the production of electricity from renewable energy sources, particularly wind and sunlight. To make the best of these energy solutions, one should also be able to reliably store the excess energy created during periods of intense sunlight or wind, so that it can be used later in times of need.
One promising type of battery for this purpose is based on zinc-manganese (Zn-Mn) and utilizes aqueous (i.e., water-based) electrodes instead of flammable organic electrolytes. These batteries rely on processes known as electrodeposition and dissolution, via which solid materials form and dissolve on electrodes as the battery is charging and discharging.
In Zn-Mn batteries, Zn serves as the anode (i.e., the electrode that releases electrons) and manganese dioxide (MnO₂) the cathode (i.e., the electrode from which electrons are gained). A key chemical reaction prompting their functioning, known as the MnO₂/Mn²⁺ conversion reaction, typically can only occur in acidic conditions.









