Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Why do black holes twinkle?

Black holes are bizarre things, even by the standards of astronomers. Their mass is so great, it bends space around them so tightly that nothing can escape, even light itself.

And yet, despite their famous blackness, some black holes are quite visible. The gas and stars these galactic vacuums devour are sucked into a glowing disk before their one-way trip into the hole, and these disks can shine more brightly than entire galaxies.

Stranger still, these black holes twinkle. The brightness of the glowing disks can fluctuate from day to day, and nobody is entirely sure why.

Space debris apocalypse: 6 objects that could wreak havoc in Earth’s orbit

The space around our planet is getting cluttered. Thousands of satellites and millions of out-of-control fragments of space debris hurtle high above our heads, threatening to collide. Here are the objects that experts fear the most.

In just the past month, the goings-on in near-Earth space have twice made headlines and prompted experts to call for action. On Jan. 27, space debris researchers looked on in horror as two huge pieces of space junk ⁠— a decades-old upper stage of a Russian rocket and a long-defunct Russian satellite — came within 20 feet (6 meters) or so of each other. The incident, described as a close call “worst case scenario,” could have spawned thousands of dangerous debris fragments that would have stayed in orbit for centuries. Then, a report released on Feb. 6 revealed that in early January a mysterious Russian satellite broke apart into 85 fragments large enough to be tracked from Earth.

David Hilbert — The Foundations of Geometry

David Hilbert was a great leader and spokesperson for the discipline of mathematics in the early 20th Century. But he was an extremely important and respected mathematician in his own right.

Like so many great German mathematicians before him, Hilbert was another product of the University of Göttingen, at that time the mathematical centre of the world, and he spent most of his working life there. His formative years, though, were spent at the University of Königsberg, where he developed an intense and fruitful scientific exchange with fellow mathematicians Hermann Minkowski and Adolf Hurwitz.

Sociable, democratic and well-loved both as a student and as a teacher, and often seen as bucking the trend of the formal and elitist system of German mathematics, Hilbert’s mathematical genius nevertheless spoke for itself. He has many mathematical terms named after him, including Hilbert space (an infinite dimensional Euclidean space), Hilbert curves, the Hilbert classification and the Hilbert inequality, as well as several theorems, and he gradually established himself as the most famous mathematician of his time.

Zigzags on a Shell From Java Are the Oldest Human Engravings

On the banks of the Solo River in Java, Indonesia, 19th-century physician Eugene Dubois uncovered an astounding fossil find: the bones of what appeared to be an ancient human, surrounded by animal remains and shells. Excavated in the 1890s, the site gained fame as the home of “Java Man,” better known today as Homo erectus.

Dated to between a million and 700,000 years old, the bones immediately provoked controversy, because Dubois claimed they showed evidence of a transitional species between apes and humans. It turns out he was right— Homo erectus fossils have since been found in Africa and elsewhere in Asia, and it is possible the species is a direct ancestor of our own. But it’s the palm-sized shells found alongside the Java remains that are raising big questions today. An examination of the shells published in Nature suggests that Homo erectus may have used the shells for tools and decorated some of them with geometric engravings. At around half a million years old, the shells represent the earliest evidence of such decorative marks and also the first known use of shells to make tools.

Dubois collected 11 species of freshwater shells at the site, called Trinil. Most of them belong to the sub-species Pseudodon vondembuschianus trinilensis, a now extinct freshwater mussel he described in 1908. Initially scientists thought the mollusks had naturally clustered at the site, perhaps driven by water currents. Even without a connection to the human fossil, the cache provided a nice census of ancient freshwater shell life, coming from at least 166 Pseudodon individuals.

Andrew Strominger: Black Holes, Quantum Gravity, and Theoretical Physics | Lex Fridman Podcast #359

Andrew Strominger is a theoretical physicist at Harvard. Please support this podcast by checking out our sponsors:
- Eight Sleep: https://www.eightsleep.com/lex to get special savings.
- Rocket Money: https://rocketmoney.com/lex.
- Indeed: https://indeed.com/lex to get $75 credit.
- ExpressVPN: https://expressvpn.com/lexpod to get 3 months free.

EPISODE LINKS:
Andrew’s website: https://www.physics.harvard.edu/people/facpages/strominger.
Andrew’s papers:
Soft Hair on Black Holes: https://arxiv.org/abs/1601.00921
Photon Rings Around Warped Black Holes: https://arxiv.org/abs/2211.

PODCAST INFO:
Podcast website: https://lexfridman.com/podcast.
Apple Podcasts: https://apple.co/2lwqZIr.
Spotify: https://spoti.fi/2nEwCF8
RSS: https://lexfridman.com/feed/podcast/
Full episodes playlist: https://www.youtube.com/playlist?list=PLrAXtmErZgOdP_8GztsuKi9nrraNbKKp4
Clips playlist: https://www.youtube.com/playlist?list=PLrAXtmErZgOeciFP3CBCIEElOJeitOr41

OUTLINE:
0:00 — Introduction.
1:12 — Black holes.
6:16 — Albert Einstein.
25:44 — Quantum gravity.
29:56 — String theory.
40:44 — Holographic principle.
48:41 — De Sitter space.
53:53 — Speed of light.
1:00:40 — Black hole information paradox.
1:08:20 — Soft particles.
1:17:27 — Physics vs mathematics.
1:26:37 — Theory of everything.
1:41:58 — Time.
1:44:24 — Photon rings.
2:00:05 — Thought experiments.
2:08:26 — Aliens.
2:14:04 — Nuclear weapons.

SOCIAL:
- Twitter: https://twitter.com/lexfridman.
- LinkedIn: https://www.linkedin.com/in/lexfridman.
- Facebook: https://www.facebook.com/lexfridman.
- Instagram: https://www.instagram.com/lexfridman.
- Medium: https://medium.com/@lexfridman.
- Reddit: https://reddit.com/r/lexfridman.
- Support on Patreon: https://www.patreon.com/lexfridman

Brain implant startup backed by Bezos and Gates is testing mind-controlled computing on humans

Synchron’s BCI is inserted through the blood vessels, which Oxley calls the “natural highways” into the brain. Synchron’s stent, called the Stentrode, is fitted with tiny sensors and is delivered to the large vein that sits next to the motor cortex. The Stentrode is connected to an antenna that sits under the skin in the chest and collects raw brain data that it sends out of the body to external devices.

Peter Yoo, senior director of neuroscience at Synchron, said since the device is not inserted directly into the brain tissue, the quality of the brain signal isn’t perfect. But the brain doesn’t like being touched by foreign objects, Yoo said, and the less invasive nature of the procedure makes it more accessible.

“There’s roughly about 2,000 interventionalists who can perform these procedures,” Yoo told CNBC. “It’s a little bit more scalable, compared to, say, open-brain surgery or burr holes, which only neurosurgeons can perform.”

Space travel influences the way the brain works

Scientists of the University of Antwerp and University of Liège (Belgium) have found how the human brain changes and adapts to weightlessness after being in space for six months. Some of the changes turned out to be lasting—even after eight months back on Earth. Raphaël Liégeois, soon to be the third Belgian in space, acknowledges the importance of the research “to prepare the new generation of astronauts for longer missions.”

A child who learns not to drop a glass on the floor, or a predicting the course of an incoming ball to hit it accurately are examples of how the incorporates the physical laws of gravity to optimally function on Earth. Astronauts who go to space reside in a weightless environment, where the brain’s rules about gravity are no longer applicable.

A new study on in cosmonauts has revealed how the brain’s organization is changed after a six-month mission to the International Space Station (ISS), demonstrating the adaptation that is required to live in weightlessness. The findings are published in the journal Communications Biology.

How gut hormones shape reward: A systematic review of the role of ghrelin and GLP-1 in human fMRI

The gastrointestinal hormones ghrelin and glucagon-like peptide-1 (GLP-1) have opposite secretion patterns, as well as opposite effects on metabolism and food intake. Beyond their role in energy homeostasis, gastrointestinal hormones have also been suggested to modulate the reward system. However, the potential of ghrelin and GLP-1 to modulate reward responses in humans has not been systematically reviewed before. To evaluate the convergence of published results, we first conduct a multi-level kernel density meta-analysis of studies reporting a positive association of ghrelin (Ncomb = 353, 18 contrasts) and a negative association of GLP-1 (Ncomb = 258, 12 contrasts) and reward responses measured using task functional magnetic resonance imaging (fMRI). Second, we complement the meta-analysis using a systematic literature review, focusing on distinct reward phases and applications in clinical populations that may account for variability across studies. In line with preclinical research, we find that ghrelin increases reward responses across studies in key nodes of the motivational circuit, such as the nucleus accumbens, pallidum, putamen, substantia nigra, ventral tegmental area, and the dorsal mid insula. In contrast, for GLP-1, we did not find sufficient convergence in support of reduced reward responses. Instead, our systematic review identifies potential differences of GLP-1 on anticipatory versus consummatory reward responses. Based on a systematic synthesis of available findings, we conclude that there is considerable support for the neuromodulatory potential of gut-based circulating peptides on reward responses. To unlock their potential for clinical applications, it may be useful for future studies to move beyond anticipated rewards to cover other reward facets.