Menu

Blog

Page 4750

Aug 16, 2022

Scientists blast atoms with Fibonacci laser to make an “extra” dimension of time

Posted by in categories: computing, particle physics, quantum physics

The new phase of matter, created by using lasers to rhythmically jiggle a strand of 10 ytterbium ions, enables scientists to store information in a far more error-protected way, thereby opening the path to quantum computers that can hold on to data for a long time without becoming garbled. The researchers outlined their findings in a paper published July 20 in the journal Nature (opens in new tab).

Aug 16, 2022

Wobbling droplets in space confirm late professor’s theory

Posted by in category: space

At a time when astronomers around the world are reveling in new views of the distant cosmos, an experiment on the International Space Station has given Cornell researchers fresh insight into something a little closer to home: water.

Aug 16, 2022

Nanomaterials pave the way for the next computing generation

Posted by in categories: computing, nanotechnology

Technology on the nanometre scale could provide solutions to move on from the solid-state era.

Aug 16, 2022

Has a Superintellect Monkeyed With Our Universe’s Physics?

Posted by in categories: alien life, chemistry, physics

In this second portion of a talk at the Dallas Conference on Science and Faith (2021), philosopher Steve Meyer discusses the ways in which groundbreaking astronomer Fred Hoyle (1915–2001) dealt with the fact that the universe seems fine-tuned for life. Hoyle’s widely cited comment on the subject was “A commonsense interpretation of the facts suggests that a superintellect has monkeyed with physics, as well as chemistry and biology, and that there are no blind forces worth speaking about in nature.” That was an unsettling idea for Hoyle, who was a well-known atheist, and he certainly sought ways around it. How did he fare?

Aug 16, 2022

Engineering circular ribonucleic acids (circRNAs) for improved protein production

Posted by in categories: bioengineering, biotech/medical

Circular ribonucleic acids (circRNAs) are a promising platform for gene expression studies as a stable and prevalent ribonucleic acid in eukaryotic cells, which arise from back-splicing. In a new report now published in Nature Biotechnology, Robert Chen and a team of interdisciplinary researchers at Stanford University, California, U.S., developed a systematic approach to rapidly assemble and test features affecting protein production based on synthetic circular RNAs. The team maximized translation of the circRNA by optimizing fine elements to implement design principles to improve circular RNA yield by several hundred-fold. The outcomes facilitated an increased translation of the RNA of interest, when compared to messenger RNA (mRNA) levels, to provide durable translation in vivo.

Developing circular RNA (circRNA) in the lab

Therapeutics based on ribonucleic acids span across messenger RNA (mRNA), small interfering RNAs (siRNA) and microRNAs (miRNA) with expansion into modern medicine including small molecules, biologics and cell therapeutics. For example, the lately popular mRNA vaccines can be designed in the lab and developed at a rapid pace to respond to evolving and urgent medical crises. Coding RNAs can be circularized into circRNAs to extend the duration of protein translation, based on RNA molecules that covalently join head-to-tail. Bioengineers have also advanced the synthesis of circular long transcripts into circRNAs. However, the fundamental mechanisms of initiating translation to form circular RNA or messenger RNA differ due to the lack of a 7-methylguanylate (M7G) cap on the circular RNAs. As a result of this, researchers need to thoroughly examine the principles of circular RNA translation to build better therapies and potentially surpass the translational capacities of mRNA.

Aug 16, 2022

A new plasma-based technology could be crucial for living on Mars

Posted by in categories: futurism, space

The fourth state of matter can help future humans survive on Mars.

Aug 16, 2022

This Artificial Neuron Uses Dopamine to Communicate With Brain Cells

Posted by in categories: biotech/medical, chemistry, cyborgs, robotics/AI

The chip is an artificial neuron, but nothing like previous chips built to mimic the brain’s electrical signals. Rather, it adopts and adapts the brain’s other communication channel: chemicals.

Called neurotransmitters, these chemicals are the brain’s “natural language,” said Dr. Benhui Hu at Nanjing Medical University in China. An artificial neuron using a chemical language could, in theory, easily tap into neural circuits—to pilot a mouse’s leg, for example, or build an entirely new family of brain-controlled prosthetics or neural implants.

A new study led by Hu and Dr. Xiaodong Chen at Nanyang Technological University, Singapore, took a lengthy stride towards seamlessly connecting artificial and biological neurons into a semi-living circuit. Powered by dopamine, the setup wasn’t a simple one-way call where one component activated another. Rather, the artificial neuron formed a loop with multiple biological counterparts, pulsing out dopamine while receiving feedback to change its own behavior.

Aug 16, 2022

A graphics toolkit for visualizing genome data

Posted by in categories: biotech/medical, genetics

Powerful ‘grammar’ allows geneticists to display their data in interactive and scalable illustrations.

Aug 16, 2022

Making robots more helpful with language

Posted by in category: robotics/AI

Even the simplest human tasks are unbelievably complex. The way we perceive and interact with the world requires a lifetime of accumulated experience and context. For example, if a person tells you, “I am running out of time,” you don’t immediately worry they are jogging on a street where the space-time continuum ceases to exist. You understand that they’re probably coming up against a deadline. And if they hurriedly walk toward a closed door, you don’t brace for a collision, because you trust this person can open the door, whether by turning a knob or pulling a handle.

Aug 16, 2022

Scientists entangled two different quantum nodes 12.5 km apart from each other

Posted by in category: quantum physics