Toggle light / dark theme

A Canadian startup called TransPod wants to revolutionize ground-based transportation by sending magnetically levitated trains through vacuum-sealed tubes at ludicrous speeds.

It’s a highly ambitious — and immensely expensive, nevermind comically vague — concept that’s generated some serious buzz in recent weeks.

And we can’t shake the feeling that we’ve seen this kind of design before. Remember the “Hyperloop?”

These days when we are struggling with the pandemic, even breathing with peace of mind has become challenging. Especially the form of the mammalian respiratory system, requiring inhalation and exhalation, leaves us more vulnerable to the propagation of viral diseases.

But now, a group of South Korean artists, Bongkyu Song of BKID and Moon&Jeon, has devised a metal lung concept that uses algae to convert carbon dioxide into oxygen. This device named Super Lung is inspired by the respiratory system of birds. Moreover, its designers assert that this concept increases mammalian respiratory efficiency by 300%. But how?

“The Ce electrolyte is highly oxidative, which poses a challenge towards the stability of anion membrane,” Daoud said. “Thus, the stability and selectivity of anion membrane require further improvement.”

The device achieved a voltage plateau of 2.3 V at 20 mA cm − 2, energy efficiency of 71.3% at 60 mA cm − 2, and a record average Coulombic efficiency of 94% during cycling.

A new AI system can create natural-sounding speech and music after being prompted with a few seconds of audio.

AudioLM, developed by Google researchers, generates audio that fits the style of the prompt, including complex sounds like piano music, or people speaking, in a way that is almost indistinguishable from the original recording. The technique shows promise for speeding up the process of training AI to generate audio, and it could eventually be used to auto-generate music to accompany videos.

After a 10-year research study that started by accident and was met with skepticism, a team of Northeastern University mechanical engineers was able to synthesize highly dense, ultra-narrow silicon nanowires that could revolutionize the semiconductor industry. Their research appears in Nature Communications.

Yung Joon Jung, Northeastern professor of mechanical and industrial engineering, says it might have been his favorite research project.

“Everything is new, and it required a lot of perseverance,” says Jung, who specializes in engineering and application of nanostructure systems and previously studied carbon nanotubes.

Antibiotics are standard treatments for fighting dangerous bacterial infections. Yet the number of bacteria developing a resistance to antibiotics is increasing. Researchers from Texas A&M University and the University of São Paulo are overcoming this resistance with light.

The researchers tailored antimicrobial (aPDT)—a chemical reaction triggered by visible light—for use on strains. Results showed the treatment weakened to where low doses of current antibiotics could effectively eliminate them.

“Using aPDT in combination with antibiotics creates a synergy of interaction working together for a solution,” said Vladislav Yakovlev, University Professor in the Department of Biomedical Engineering at Texas A&M and co-director of the project. “It’s a step in the right direction against resistant bacteria.”

Optics, the study of light, is one of the oldest fields in physics and has never ceased to surprise researchers. Although the classical description of light as a wave phenomenon is rarely questioned, the physical origins of some optical effects are. A team of researchers at Tampere University have brought the discussion on one fundamental wave effect, the debate around the anomalous behavior of focused light waves, to the quantum domain.

The researchers have been able to show that quantum waves behave significantly differently from their classical counterparts and can be used to increase the precision of distance measurements. Their findings also add to the discussion on physical of the anomalous focusing behavior. The results are now published in Nature Photonics.

“Interestingly, we started with an idea based on our earlier results and set out to structure for enhanced measurement precision. However, we then realized that the underlying physics of this application also contributes to the long debate about the origins of the Gouy phase anomaly of focused light fields,” explains Robert Fickler, group leader of the Experimental Quantum Optics group at Tampere University.