Menu

Blog

Page 4636

Jun 11, 2022

Xanadu Photonic Quantum Chip Solves Trillions of Times Faster

Posted by in categories: internet, quantum physics, supercomputing

Canadian quantum computer company, Xanadu, has used its photonic quantum computer chip, Borealis, to solve a problem in 36 microseconds versus classical supercomputers taking 9,000 years. This is 7,884 trillion times faster. This runtime advantage is more than 50 million times larger than that of earlier photonic demonstrations.

An earlier quantum photonic computer used a static chip. The Borealis optical elements can all be readily programmed.

Continue reading “Xanadu Photonic Quantum Chip Solves Trillions of Times Faster” »

Jun 10, 2022

Decoding a key part of the cell, atom

Posted by in categories: computing, genetics, nanotechnology, nuclear energy, particle physics

Whatever you are doing, whether it is driving a car, going for a jog, or even at your laziest, eating chips and watching TV on the couch, there is an entire suite of molecular machinery inside each of your cells hard at work. That machinery, far too small to see with the naked eye or even with many microscopes, creates energy for the cell, manufactures its proteins, makes copies of its DNA, and much more.

Among those pieces of machinery, and one of the most complex, is something known as the nuclear pore complex (NPC). The NPC, which is made of more than 1,000 individual proteins, is an incredibly discriminating gatekeeper for the cell’s nucleus, the membrane-bound region inside a cell that holds that cell’s genetic material. Anything going in or out of the nucleus has to pass through the NPC on its way.

Nuclear pores stud the surface of the cell’s nucleus, controlling what flows in and out of it. (Image: Valerie Altounian)

Jun 10, 2022

10 Best Tools for Machine Learning

Posted by in categories: education, robotics/AI, security

The will help you find new opportunities to use and further develop your machine learning skills.


Machine learning has proven to be a tool that performs well in a variety of application fields. From educational and training companies to security systems like facial recognition and online transaction prevention, it is used to improve the quality and accuracy of existing techniques.

Choosing the best tools for machine learning and navigating the space of tools for machine learning isn’t as simple as Google searching “machine learning tools”.

Continue reading “10 Best Tools for Machine Learning” »

Jun 10, 2022

DARPA Seeking Proposals for ANSR Program to Improve Trustworthy AI; Sandeep Neema Quoted

Posted by in category: robotics/AI

Defense Advanced Research Projects Agency (DARPA) announced on Friday that the agency is seeking proposals for its Assured Neuro Symbolic Learning and Reasoning (ANSR) program to address the trustworthiness of artificial intelligence and machine learning capabilities. Motivating new thinking and ap.

Jun 10, 2022

Synapse Study Explores the “Dark Matter of the Brain”

Posted by in categories: biological, chemistry, cosmology, neuroscience

They are part of the brain of almost every animal species, yet they remain usually invisible even under the electron microscope. “Electrical synapses are like the dark matter of the brain,” says Alexander Borst, director at the MPI for Biological Intelligence, in foundation (i.f). Now a team from his department has taken a closer look at this rarely explored brain component: In the brain of the fruit fly Drosophila, they were able to show that electrical synapses occur in almost all brain areas and can influence the function and stability of individual nerve cells.

Neurons communicate via synapses, small contact points at which chemical messengers transmit a stimulus from one cell to the next. We may remember this from biology class. However, that is not the whole story. In addition to the commonly known chemical synapses, there is a second, little-known type of synapse: the electrical synapse. “Electrical synapses are much rarer and are hard to detect with current methods. That’s why they have hardly been researched so far,” explains Georg Ammer, who has long been fascinated by these hidden cell connections. “In most animal brains, we therefore don’t know even basic things, such as where exactly electrical synapses occur or how they influence brain activity.”

An electrical synapse connects two neurons directly, allowing the electrical current that neurons use to communicate, to flow from one cell to the next without a detour. Except in echinoderms, this particular type of synapse occurs in the brain of every animal species studied so far. “Electrical synapses must therefore have important functions: we just do not know which ones!” says Georg Ammer.

Jun 10, 2022

Scientists discovered a new molecule that kills even the deadliest cancer

Posted by in category: biotech/medical

A team from UT Dallas has discovered a molecule that destroys adamant cancer cells. Experiments on mice and human tissue found that the compound was effective even in the most aggressive tumors, offering hope.

Jun 10, 2022

Graphene charge-injection photodetectors with a broader detection bandwidth

Posted by in categories: materials, particle physics

Photodetectors, sensors that can detect light or other forms of electromagnetic radiation, are essential components of imaging tools, communication systems, and various other technologies on the market. These sensors work by converting photons (i.e., light particles) into electrical current.

Researchers at Zhejiang University have recently developed a new photodetector that could detect light within a broader bandwidth. Their device, presented in a paper published in Nature Electronics, could be used to develop new and more advanced imaging technologies.

“Our recent project is based on traditional charge-coupled device (CCD) and complementary metal-oxide-semiconductor (CMOS) imaging technologies,” Prof. Yang Xu, one of the researchers who carried out the study, told TechXplore. “Our novel imaging devices combining CCD’s MOS photogate for and CMOS’s independent pixel structure can significantly benefit monolithic integration, performance, and readout.”

Jun 10, 2022

Scientists craft living human skin for robots

Posted by in categories: materials, robotics/AI

From action heroes to villainous assassins, biohybrid robots made of both living and artificial materials have been at the center of many sci-fi fantasies, inspiring today’s robotic innovations. It’s still a long way until human-like robots walk among us in our daily lives, but scientists from Japan are bringing us one step closer by crafting living human skin on robots. The method developed, presented June 9 in the journal Matter, not only gave a robotic finger skin-like texture, but also water-repellent and self-healing functions.

“The finger looks slightly ‘sweaty’ straight out of the culture medium,” says first author Shoji Takeuchi, a professor at the University of Tokyo, Japan. “Since the finger is driven by an , it is also interesting to hear the clicking sounds of the motor in harmony with a finger that looks just like a real one.”

Continue reading “Scientists craft living human skin for robots” »

Jun 10, 2022

Researchers envision wood-derived, self-powered biosensors for wireless devices

Posted by in categories: mobile phones, privacy

Wood-derived materials can be used to harvest electrical energy from everyday movements such as walking, according to University of Toronto and University of Waterloo researchers.

In a new study recently published in Nano Energy, the team demonstrated the use of lignocellulosic nanofibrils—derived from —in a prototype self-powered device capable of sending a wireless signal to a smartphone via bluetooth.

Such devices can be used to track biometric data such as heart rate, oxygen levels or skin conductivity. The innovation could improve the performance of these devices while lowering their environmental impact.

Jun 10, 2022

Researchers Find Bluetooth Signals Can be Fingerprinted to Track Smartphones

Posted by in category: mobile phones

A new study has shown for the first time that the Bluetooth signals constantly emitted by our smartphones have a unique fingerprint.