Toggle light / dark theme

Real-world data (and real-world evidence) can also play roles outside of public health emergencies like Covid and monkeypox. They can help determine the long-term effectiveness of many treatments, especially those subject to the expedited approval process, such as those used for rare diseases, and can help determine the value of drugs in general. In many cases, clinical trials are not enough to understand how well drugs really work. Janet Woodcock, the director of the FDA’s Center for Drug Evaluation and Research, has said that the clinical trial system is “broken” and that more use of real-world evidence could be an effective addition to the approval process.

The FDA has been taking steps toward using more real-world data outside of public health emergencies like Covid and monkeypox. In 2018, the agency issued guidance for use of such evidence in approving drugs. By 2021, when the FDA issued enhanced guidance on the topic, real-world evidence had been used in approving 90 medical devices and the new use of a drug, Prograf. But this is not happening enough in practice.

Failing to use real-world data means missing out not just on better understanding of the effectiveness of individual drugs but also on a chance to improve the entire pharmaceutical sector, including addressing issues like rising costs. The availability of more data on real-world outcomes from using drugs, especially gene therapies and other innovative and often very expensive treatments, would pave the way for pricing to take patient outcomes into account through approaches like value-based contracting, when health insurers base drug prices on how well drugs work in the people who take them, rather than just in premarket clinical trials.

Summary: Pain-sensing neurons in the put secrete substance P, a molecule that protects against gut inflammation and tissue damage by boosting specific microbes in the gut. In people with inflammatory bowel disease, the pain-sensing neurons are diminished and there are significant disruptions in pain-signaling genes.

Source: Weill Cornell University.

Neurons that sense pain protect the gut from inflammation and associated tissue damage by regulating the microbial community living in the intestines, according to a study from researchers at Weill Cornell Medicine.

With a fresh comment, Elon Musk, the brains behind Tesla and SpaceX, has ignited Twitter once again. “Please purchase my perfume, so I can buy Twitter,” reads his most recent tweet. For those who are unaware, Elon Musk agreed to buy the social networking site Twitter in April 2022.

Twitter said in October 2022 that it had spoken with Elon Musk and that he had verified his willingness to pay the $44 billion sum in question. Musk now plans to make some money by offering perfume for sale online.

In the beginning, Musk bought a 9.2 percent share on Twitter. Musk, however, made the decision to fully acquire Twitter owing to several differences and a desire to promote “Free Speech” on the social networking platform. In April 2022, a settlement was reached between the two sides, and $54.20 per share in cash was agreed upon.

When astronomers around the world watched the epic collision between two neutron stars in 2017, the main event was just the beginning. The after-effects, both immediate and longer-term, of such a massive, never-before-seen merger were bound to be exciting, interesting, and deeply informative.

And now scientists have revealed a doozy. As the two neutron stars slammed together, they ejected a jet of material that, to our eyes, appeared to blast into space at seven times the speed of light.

This, of course, is impossible, according to our current understanding of physics. It’s a phenomenon known as superluminal speed, which in spite of its name is actually an illusion based on our viewing angle.

Textile engineers have developed a fabric woven out of ultra-fine nano-threads made in part of phase-change materials and other advanced substances that combine to produce a fabric that can respond to changing temperatures to heat up and cool down its wearer depending on need.

Materials scientists have designed an advanced textile with nano-scale threads containing in their core a phase-change material that can store and release large amounts of heat when the material changes phase from liquid to solid. Combining the threads with electrothermal and photothermal coatings that enhance the effect, they have in essence developed a fabric that can both quickly cool the wearer down and warm them up as conditions change.

A paper describing the manufacturing technique appeared in ACS Nano on August 10.

Inspired by the way termites build their nests, scientists at the California Institute of Technology (Caltech) developed a framework to design new materials that mimic the fundamental rules hidden in nature’s growth patterns. The researchers demonstrated that by using these rules, it is possible to create materials designed with specific programmable properties.

The research was published in the journal Science on August 26. It was led by Chiara Daraio, G. Bradford Jones Professor of Mechanical Engineering and Applied Physics and Heritage Medical Research Institute Investigator.

“Termites are only a few millimeters in length, but their nests can stand as high as 4 meters—the equivalent of a human constructing a house the height of California’s Mount Whitney,” says Daraio. If you peer inside a termite nest you will see a network of asymmetrical, interconnected structures, similar to the interior of a sponge or a loaf of bread. Made of sand grains, dirt, dust, saliva, and dung, this disordered, irregular structure appears arbitrary. However, a termite nest is specifically optimized for stability and ventilation.

The classification performance of all-optical Convolutional Neural Networks (CNNs) is greatly influenced by components’ misalignment and translation of input images in the practical applications. In this paper, we propose a free-space all-optical CNN (named Trans-ONN) which accurately classifies translated images in the horizontal, vertical, or diagonal directions. Trans-ONN takes advantages of an optical motion pooling layer which provides the translation invariance property by implementing different optical masks in the Fourier plane for classifying translated test images. Moreover, to enhance the translation invariance property, global average pooling (GAP) is utilized in the Trans-ONN structure, rather than fully connected layers.