Join us as we meet the engineers, entrepreneurs, doctors and patients who are giving people a new lease on life today, while building our future of tomorrow.
Research into dopamine-producing cells and rogue proteins among efforts to find far-reaching treatment.
Flint tools discovered more than 50 years ago in the Tunel Wielki cave have been dated to half a million years ago. — HeritageDaily — Archaeology News.
An evolutionary approach to consciousness can resolve the ‘hard problem’ – with radical implications for animal sentience by Nicholas Humphrey + BIO.
The proton is a composite particle made up of fundamental building blocks of quarks and gluons. These components and their interactions determine the proton’s structure, including its electrical charges and currents. This structure deforms when exposed to external electric and magnetic (EM) fields, a phenomenon known as polarizability. The EM polarizabilities are a measure of the stiffness against the deformation induced by EM fields. By measuring the EM polarizabilities, scientists learn about the internal structure of the proton.
This knowledge helps to validate scientific understanding of how nucleons (protons and neutrons) form by comparing the results to theoretical descriptions of gamma-ray scattering from nucleons. Scientists call this scattering process nucleon Compton scattering.
When scientists examine the proton at a distance and scale where EM responses dominate, they can determine values of EM polarizabilities with high precision. To do so, they use the theoretical frame of Effective Field Theories (EFTs). The EFTs hold the promise of matching the description of the nucleon structure at low energies to the current theory of the strong nuclear force, called quantum chromodynamics (QCD). In this research, scientists validated EFTs using proton Compton scattering. This approach also validated the framework and methodology that underlie EFTs.
Researchers have shown that 3D laser printing can be used to fabricate a high-quality, complex polymer optical device directly on the end of an optical fiber. This type of micro-optical device—which has details smaller than the diameter of a human hair—could provide an extremely compact and inexpensive way to tailor light beams for a variety of applications.
“Communication technologies, the internet and many other applications are based on optical fibers,” said research team leader Shlomi Lightman from Soreq Nuclear Research Center in Israel. “When light comes out of the fiber, large bulky optical elements are typically used to route it to the next location. Our approach minimizes both the size and cost for this process by integrating the routing process into the fiber itself.”
In the journal Optics Letters, Lightman and colleagues describe how they fabricated the tiny multi-component beam shaper directly onto a fiber. The device turns normal laser light into a twisted Bessel beam that carries orbital angular momentum and doesn’t expand in space like typical light beams.
Intel has just announced a monumental achievement that could make quantum processors available at scale.
Summary: Brain organoids are helping researchers map the molecular, genetic, and structural changes that occur during brain development.
Source: ETH Zurich.
The human brain is probably the most complex organ in the entire living world and has long been an object of fascination for researchers. However, studying the brain, and especially the genes and molecular switches that regulate and direct its development, is no easy task.
Clone Robotics is going to impressive lengths to make sure its “intelligent androids” will have some of the most human-like hands in the business, and watching the way their hydraulic “muscles” move under a transparent skin is absolutely hypnotic.