Toggle light / dark theme

Did the laws of physics come into being at the Big Bang?

Watch the full talk at https://iai.tv/video/the-laws-of-physics-are-not-fixed-joao-…escription.

We think that the laws of physics are unchanging and cannot be violated. Join pioneering physicist, João Magueijo, as he argues that everything we thought we knew about the laws of physics is wrong. They do change. And they can be violated. What’s more, a new understanding of these laws could help solve the mystery of dark matter.

#physics #science #speedoflight.

Can theory and computation methods help the search for the best divertor material and thus contribute to making fusion energy a reality?

Exploring nuclear fusion as a clean energy source reveals a critical need for advanced plasma-facing materials. MARVEL lab researchers identified materials that might withstand fusion’s extreme conditions and proposed alternatives to tungsten, the current choice.

Nuclear fusion and the material challenge.

This afternoon, SpaceX plans to launch its latest Starlink mission from Cape Canaveral Space Launch Complex 40. Then on Monday, the company hopes to launch the Koreasat 6A telecommunications satellite from Kennedy Space Center Pad 39A. Another Starlink mission is then set for launch Tuesday evening.

When is the next Florida rocket launch?Is there a launch today? Upcoming SpaceX, NASA rocket launch schedule from Florida

Today’s launch window for the SpaceX Starlink 6–69 mission opens now at 6:56 p.m. EST. SpaceX states they now only have until 8:22 p.m. to launch.

Step aside, hard and rigid materials — a new soft, sustainable electroactive material is here, ready to unlock new possibilities for medical devices, wearable technology, and human-computer interfaces.

Using peptides and a snippet of the large molecules in plastics, Northwestern University materials scientists have developed materials made of tiny, flexible nano-sized ribbons that can be charged just like a battery to store energy or record digital information. Highly energy efficient, biocompatible, and made from sustainable materials, the systems could give rise to new types of ultralight electronic devices while reducing the environmental impact of electronic manufacturing and disposal.

The study was recently published in the journal Nature.

The brain is a marvel of efficiency, honed by thousands of years of evolution so it can adapt and thrive in a rapidly changing world. Yet, despite decades of research, the mystery of how the brain achieves this has remained elusive.

Our new research, published in the journal Cell, reveals how neurons – the cells responsible for your childhood memories, thoughts and emotions – coordinate their activity.

It’s a bit like being a worker in a high-performing business. Balancing individual skills with teamwork is key to success, but how do you achieve the balance?

Feline-inspired vision technology enhances accuracy in challenging environments, paving the way for smarter, more efficient autonomous systems.

Researchers have unveiled a vision system inspired by feline eyes to enhance object detection in various lighting conditions. Featuring a unique shape and reflective surface, the system reduces glare in bright environments and boosts sensitivity in low-light scenarios. By filtering unnecessary details, this technology significantly improves the performance of single-lens cameras, representing a notable advancement in robotic vision capabilities.

Autonomous systems like drones, self-driving cars, and robots are becoming more common in our daily lives. However, they often struggle to “see” well in different environments — like bright sunlight, low light, or when objects blend into complex backgrounds. Interestingly, nature may already have the solution to this problem.

Balanced cell death and survival are among the most important cell development and homeostasis pathways that can play a critical role in the onset or progress of malignancy steps. Anastasis is a natural cell recovery pathway that rescues cells after removing the apoptosis-inducing agent or brink of death. The cells recuperate and recover to an active and stable state. So far, minimal knowledge is available about the molecular mechanisms of anastasis. Still, several involved pathways have been explained: recovery through mitochondrial outer membrane permeabilization, caspase cascade arrest, repairing DNA damage, apoptotic bodies formation, and phosphatidylserine. Anastasis can facilitate the survival of damaged or tumor cells, promote malignancy, and increase drug resistance and metastasis.

Anastasis is a phenomenon that has been recently defined as a return from induced apoptosis. Its mechanism has not been clearly elucidated. Anastasis is thought to be involved in the development of drug resistance in cancer cells, however the distinct regulation of anastasis in normal and cancerous cells during anti-cancer therapy has not been discovered. One of the most privileged therapy strategies focuses on the drugs that are selectively cytotoxic in cancer cells but not negatively affect normal cell proliferation. This study for the first time comparatively evaluated the anastatic effect of a common synthetic cytotoxic agent, cisplatin and a natural cytotoxic agent, bee venom. The study showed that bee venom induced anastasis in normal cells (MCF10A, NIH3T3 and ARPE19) but cancer cells (MDA-MB-231 and MCF7) were irreversibly in cell death process.

After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.

Bees are commercially beneficial insects that have been around since the Cretaceous age of the Mesozoic Era. They also help fertilize many different crops. Bees are helpful, but their capacity to administer excruciating and poisonous stings constitutes a risk. Thankfully, most honeybees are not hostile to people and only resort to violence if they perceive danger (Pucca et al., 2019). Apis mellifera is the most often used honeybee species for agricultural pollination globally. All bee products, particularly venom, and honey, have been used for centuries, and their medicinal properties have been described in holy writings such as the Bible and the Quran (Ali, 2024; Dinu et al., 2024). Bee venom (BV) treatment involves injecting honeybee venom into the human body to cure various ailments. For over 5,000 years, this technique has been used in complementary therapies.