Toggle light / dark theme

After a treacherous journey, NASA’s Curiosity Mars rover has reached an area that is thought to have formed billions of years ago when the Red Planet’s water disappeared.

This region of Mount Sharp, the Curiosity rover’s Martian stomping ground, is rich in salty minerals that scientists think were left behind when streams and ponds dried up. As such, this region could hold tantalizing clues about how the Martian climate changed from being similar to Earth’s to the frozen, barren desert that Curiosity explores today.

SpaceX has rolled out an upgraded version of its Rideshare program that will allow even more small satellite operators to send their spacecraft to orbit for extremely low prices.

SpaceX threw its hat into the growing ring of smallsat launch aggregators in August 2019 with its Smallsat Program. Initially, the company offered a tiered pricing scale with multiple rates for the different sizes of ports a satellite operator could attach their spacecraft to. For customers purchasing their launch services more than 12 months in advance, SpaceX aimed to charge a minimum of $2.25 million for up to 150 kilograms (~330 lb) and a flat $15,000 for each additional kilogram. Customers placing their order 6–12 months before launch would pay a 33% premium ($20,000/kg).

SpaceX may have sorely misjudged the market, however, because the company introduced a simpler, reworked pricing system just a few months later. SpaceX slashed prices threefold, removed most of the tier system, and added a portal that allowed customers to easily reserve launch services online. Compared to the first attempt, the new pricing – $1 million for up to 200 kilograms (~440 lb) and $5000 for each extra kilogram – was extraordinarily competitive and effectively solidified SpaceX as the premier source of rideshare launch services overnight. Save for an inflation-spurred increase to $1.1 million and $5500/kg, that pricing has remained stable for almost three years, and SpaceX’s Smallsat Program has become a spectacular success.

Gates will provide grants to prepare teachers better for teaching math and to curriculum companies and nonprofits to develop higher-quality teaching materials. The foundation will also support research into math education and make grants to help high-school math courses prepare students for college and the workplace.

A big problem with math as it is taught today is that students learn in isolation and can feel crushed when they get the wrong answer to a problem, says Shalinee Sharma, co-founder of Zearn, an educational nonprofit and Gates grantee who, with Hughes, spoke with reporters this week. Zearn uses computer-based lessons that incorporate a lot of visuals to keep students interested and provides feedback on progress to help teachers tailor lessons for individual students. A new approach in which students work in teams to solve problems, she said, can turn all students into “math kids.”

“When all kids are ‘math kids,’ making mistakes will be OK,” she said. “It won’t be embarrassing. In fact, making mistakes will be considered normal and an essential part of math learning.”

Prof. Aleks Farseev is an entrepreneur, research professor, keynote speaker, and the CEO of SoMin.ai, a long-tail ad optimization platform.

Not too long ago, I was asked to present a tool to some of my clients. It was a simple prototype, where a person would type in a few things (i.e., advertising channel, product and occasion), and in turn, the machine would give a number of sample ads. When I clicked the button, in just a few seconds, the machine spat out several ads complete with images and text. The first comment was, “Wow, that was really fast.” What would take a person a few hours to do, this machine did in but a fraction. There were a lot of other interesting comments, some even pointing out that this machine was really creative. Then one person spoke out, a comment that put the room into an uncomfortable silence, “This thing is going to take my job.”

We are in a time of uncertainty. As AI applications become more visible and popular, many will start wondering how they will impact our society. There are the “doomsayers” who think AI will take over the world. Then there are the more “sane” people who think that AI will never be able to replicate humans. After all, how can a machine copy something so intricate and complex? But then again, day by day, the advancements in AI continue to surprise us, as if to challenge our very humanity.

Veteran actor Mark Hamill said in an interview that he has sent at least 500 drones to Ukraine through the country’s fundraising platform, as Ukraine’s ongoing conflict with Russia enters its ninth month.

During an appearance on Bloomberg Radio’s “Sound On”, Hamill, widely known for his role as Luke Skywalker in the acclaimed “Star Wars” film franchise, told host Joe Mathieu that he only sent the equipment to Ukraine because they desperately need it.

As sales of battery electric vehicles (BEV) increase, OEMs need to focus on R&D excellence, flexible manufacturing, and value-chain integration to improve profitability.

Even in countries where BEV sales are picking up, many automotive executives are concerned about profitability. Some EV OEMs have already begun investigating changes to their go-to-market models that may increase sales and reduce costs quickly. Over the midterm, however, they will need to apply additional measures to be profitable, and our recent research shows that three levers will be particularly important in this respect:


Most OEMs do not have all the required capabilities, such as the ability to develop software for both batteries and e-drive, to move BEV production completely in-house. Consequently, they often need to form strategic partnerships across the ecosystem, including those for BEV design, manufacturing, and component sourcing. These partnerships will also allow them to share the burden of capex spending until they achieve sufficient scale.

Partnerships can take many forms, such as joint ventures, and OEMs may form links across the value chain, such as those with battery suppliers. These partnerships may have various goals, from securing a supply of high-quality lithium-ion battery cells to codeveloping vehicles to building a supporting charging infrastructure. Managing such partnerships will require close attention and the ability to lead a complex network.

The Indian Institute of Technology (IIT) Madras has announced a collaborative study with the Jet Propulsion Laboratory (JPL), the research hub of central US space agency National Aeronautics and Space Administration (NASA), to study the impact of microorganisms aboard the International Space Station. Observations from the research project will help create medical solutions to aid astronauts in long term human missions in space.

Explaining the observations, Karthik Raman, assistant professor at the department of biotechnology, IIT Madras, said that the collection of microbes, which includes a variety of bacteria and fungi, have occurred over time due to the astronauts that have been aboard the ISS over the past decades.

“Even though the ISS is a highly sterile environment, these microbes can play a big role in the way human presence in a space environment works — which our research work sought to highlight,” Raman said.