Toggle light / dark theme

PRESS RELEASE — Today, the U.S. Department of Energy (DOE) announced $71 million in funding for 25 projects in high energy physics that will use the emerging technologies of quantum information science to answer fundamental questions about the universe.

This research will develop and deploy innovative solutions for scientific discovery by applying the unique capabilities and features of the quantum world to the challenges of making new discoveries in fundamental physics. Awards funded under this program will advance theories of gravity and spacetime, develop quantum sensors that can see previously undetectable signals, and build pathfinder experiments to demonstrate increased discovery reach in searches for dark matter and other new particles and phenomena.

“Quantum information science is opening up new ways for us to understand and explore the universe,” said Regina Rameika, DOE Associate Director of Science for High Energy Physics. “With these projects, we are supporting scientists in developing quantum technologies that will empower the next generation of theory and experiment in high energy physics.”

Seismic imaging has revealed two colossal regions deep within Earth’s mantle that could reshape our understanding of the planet’s composition and history. These continent-sized anomalies, known as large low-velocity provinces (LLVPs), lie near the core, beneath Africa and the Pacific Ocean.

LLVPs are notable for their unusual makeup and their ability to slow seismic waves, making them mysterious features of Earth’s interior.

Their origins have long baffled geologists, but a groundbreaking study has introduced a bold hypothesis: these subterranean giants might be remnants of Theia, a lost planet that collided with Earth billions of years ago.

Check out my own course on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Up until last week, physicists believed that matter is made up of only two types of particles: those whose spin has full-integer values (bosons) and those whose spin comes has half-integer values (fermions). But in a new paper, a group of researchers turned the world of physics upside down by mathematically proving that a third type of particles – the “paraparticles” are possible.

Paper: https://www.nature.com/articles/s4158

🤓 Check out my new quiz app ➜ http://quizwithit.com/

Astrophysicists have long been intrigued by the possibility of dark stars-massive celestial objects fueled not by nuclear fusion but by the enigmatic energy of dark matter. Thanks to images taken by the James Webb Space Telescope (JWST), the scientific community has perhaps also found signs of such elusive entities. Could these dark stars, which shine billions of times brighter than our sun, rewrite the story of the universe’s infancy?

Dark stars, despite the word “dark”, are hypothesized luminous sources that may have existed in the universe’s infancy. In contrast to traditional stars that work with nuclear fusion, dark stars are speculated to obtain their energy from self-annihilation of dark matter particles.

As a result, energy is released that warms the ambient hydrogen and helium, and this leads the primordial clouds to glow brightly and expand to enormous scale-some up to a million times mass of the sun. These stars may have also been born in “minihaloes”, dense pockets of dark matter in the early universe.