Our Wolfram Physics Project has provided a surprisingly successful picture of the underlying (deeply computational) structure of our physical universe. I’ll talk here about how our perception of that underlying structure is determined by what seem to be key features of our consciousness—and how this leads to detailed laws of physics as we experience them. Our Physics Project has led to the concept of the ruliad—the entangled limit of all possible computations—which seems to represent a common underlying structure from which both physics and mathematics emerge. I’ll talk about the comparison between physical and mathematical observers, and how their common features in consciousness lead to implications for general laws of “bulk mathematics”.
Stephen Wolfram is at his jovial peak in this technical interview regarding the Wolfram Physics project (theory of everything).
Sponsors: https://brilliant.org/TOE for 20% off. http://algo.com for supply chain AI.
Link to the Wolfram project: https://www.wolframphysics.org/
Patreon: https://patreon.com/curtjaimungal.
Crypto: https://tinyurl.com/cryptoTOE
PayPal: https://tinyurl.com/paypalTOE
Twitter: https://twitter.com/TOEwithCurt.
Discord Invite: https://discord.com/invite/kBcnfNVwqs.
iTunes: https://podcasts.apple.com/ca/podcast/better-left-unsaid-wit…1521758802
Pandora: https://pdora.co/33b9lfP
Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e.
Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeverything.
Merch: https://tinyurl.com/TOEmerch.
TIMESTAMPS:
The use of smartphones has become an increasingly popular behaviour in people’s lives. However, an increased number of people find it difficult to minimise the use of smartphones, leading to the emergence of smartphone-addictive behaviours (Panova and Carbonell, 2018; Busch and McCarthy, 2021). In particular, the rapid spread of coronavirus disease 2019 around the world has led to a dramatic increase in the number of smartphone addicts due to home isolation (Caponnetto et al., 2021). Smartphone addiction is an emerging behavioural addiction, which refers to excessive dependence on and abuse of smartphones by individuals (Kwon et al., 2013; Billieux et al., 2015). Notably, smartphone addiction has been reported to have negative impacts on individuals’ cognitive functions, such as attention (Choi et al., 2021; Lee et al., 2021), perception (Dong et al., 2014) and memory (Hartanto and Yang, 2016; Tanil et al., 2020). Nevertheless, the influence of smartphone addiction on individuals’ advanced cognition is still unclear. Smartphone addiction may impair flexible cognitive processes (Dong et al., 2014), such as those that contribute to creative cognition. However, to our knowledge, the influence of smartphone addiction on creative cognition has not been explored.
Given the negative effects and high incidence of smartphone addiction (Zou et al., 2021), it is essential to uncover the underlying mechanisms, especially the neural mechanisms, by which smartphone addiction affects creative cognition. Creative cognition is defined as the ability to generate original and useful products (Sternberg and Lubart, 1999). It is a core cognitive element that allows for daily flexible problem solving and the generation of new ideas. The main components of creative cognition are (i) overcoming the semantic constraints of existing knowledge, which involves goal-directed behaviour through cognitive control, and (ii) building unusual associations to expand the existing structure of knowledge, which involves the spontaneous and unconstrained generation of novel associations (Ward et al., 1997; Abraham, 2014; Marron and Faust, 2019).
According to the problematic mobile phone use model (Billieux et al., 2015), the lack of planning or reduced cognitive control is a crucial contributor to smartphone addiction behaviour. Previous studies have also indicated that impaired cognitive control is a prominent feature of smartphone addicts, characterised by an inability to focus on task-related information and an inability to suppress dominant, automatic responses (Van Deursen et al., 2015; Li et al., 2021). In fact, previous studies have emphasised the contribution of cognitive control to the generation of creative ideas (Beaty et al., 2016; Benedek and Fink, 2019). During creative idea generation, known ideas are often initially retrieved, which acts as a source of interference allowing the retrieval process to focus on familiar and dominant ideas (Abraham, 2014). In this context, cognitive control is needed to drive the retrieval process of novel and remote information.
Universe to go through a cosmic Poincare Recurrence? In other words, can the universe repeats itself? Will the same history happen again at some distant future? If the universe is closed and isolated, which indicates that it’s probably qualified for experiencing a Poincare Recurrence in cosmic scale, will the entire history of our universe happen for an infinite number of times? If cosmic Poincare Recurrence can take place, does it mean that the entropy of the entire universe will decrease at some point? Isn’t that the violation of the second law of thermodynamics?
===
Sources:
(K. Ropotenko) The Poincar´e recurrence time for the de Sitter space with dynamical chaos.
https://arxiv.org/abs/0712.
(Don N. Page) Information Loss in Black Holes and-or Conscious Beings.
https://arxiv.org/abs/hep-th/9411193
(Julian Barbour) Arrows of Time in Unconfined Systems.
Immune checkpoints are a normal part of the immune system. Their function is to prevent an immune response from being so powerful that it destroys healthy cells in the body. Immunotherapy drugs called immune checkpoint inhibitors, such as Keytruda and Opdivo, work by unleashing the immune system’s T cells to attack tumor cells. Their introduction a decade ago marked a major advance in cancer therapy. However, only 10% to 30% of treated patients experience long-term improvement.
Now, scientists at Albert Einstein College of Medicine describe findings that could bolster the effectiveness of immune-checkpoint therapy in a study published in The Journal of Clinical Investigation (JCI) on November 15.
Rather than rally T cells against cancer, the Einstein research team used different human immune cells known as natural killer (NK) cells. Their dramatic results were dramatic. “We believe the novel immunotherapy we’ve developed has great potential to move into clinical trials involving various types of cancer,” said study leader Xingxing Zang, M.Med., Ph.D. He is the Louis Goldstein Swan Chair in Cancer Research and professor of microbiology & immunology, of oncology, of urology, and of medicine at Einstein and a member of the Cancer Therapeutics Program of the Montefiore Einstein Cancer Center.
All proton-proton data collected by the CMS experiment during LHC Run-1 (2010−2012) are now available through the CERN Open Data Portal. Today’s release of 491 TB of collision data collected during 2012 culminates the process that started in 2014 with the very first release of research-grade open data in experimental particle physics. Completing the delivery of Run-1 data within 10 years after data taking reaffirms the CMS collaboration’s commitment to its open data policy.
The newly released data consist of 42 collision datasets from CMS data taken in early and late 2012 and count an additional 8.2 fb-1 of integrated luminosity for anyone to study. Related data assets, such as luminosity information and validated data filters, have been updated to cover the newly released data.
To foster reusability, physics analysis code examples to extract physics objects from these data are now included as CERN Open Data Portal records. This software has been successfully used to demonstrate the intricacies of the experimental particle data in the CMS Open Data workshop during the last three years. In addition, the CMS Open Data guide covers details of accessing physics objects using this software, giving open data users the possibility to expand on this example code for studies of their own interest.
According to Johns Hopkins Medicine scientists, a recent study with obese mice adds to evidence that specialized channel proteins are potential therapeutic targets for sleep apnea and other unusually slow breathing disorders in obese individuals.
The protein, a cation channel known as TRPM7, is located in carotid bodies, minute sensory organs in the neck that sense changes in oxygen and carbon dioxide levels, as well as certain hormones such as leptin, in the bloodstream. TRPM7 proteins aid in the transport and regulation of positively charged molecules into and out of the cells of the carotid bodies.
Lenise Kim, Ph.D., a postdoctoral fellow at Johns Hopkins Medicine and the leader of the current study, expands on earlier results from the lab that indicated TRPM7 had a role in the development of high blood pressure in mice.
SAN FRANCISCO (CBS SF) – At a conference Wednesday afternoon, a UCSF researcher presented the results of a two-year study that found strong evidence that the risk factors for dementia can be reduced up to 30% with a modified lifestyle.
Dr. Kristine Yaffe, a professor of Psychiatry, Neurology, and Epidemiology, presented her findings from a two-year randomized pilot study of nearly 200 older adults at the annual Clinical Trials on Alzheimer’s Disease conference in San Francisco.
She told KPIX 5 that it’s still a complex puzzle as to why some people get Alzheimer’s Disease and others don’t. That’s why her team of researchers joined forces with some colleagues at Kaiser Washington in Seattle and proceeded with the two-year study.
“What this new result does is provide a clearer picture of how our local universe has come together — it is telling us that at least in one of the large galaxies, there has been this sporadic feeding of small galaxies,” Lewis said in a press release.
Globular clusters are at the center of this research. They’re older associations of stars that have lower metallicity. There are at least 150 in the Milky Way, likely more. They play a role in the galactic evolution, but the role isn’t clearly understood. Globulars, as they’re known, are more prevalent in a galaxy’s halo, while their counterparts, open clusters, are found in the galactic disks.
The researchers behind this work identified a population of globulars in Andromeda’s inner halo that all have the same metallicity. Metallicity refers to the elemental makeup of stars, with elements heavier than hydrogen and helium referred to as metals in astronomy. The globulars have lower metallicity than most stars in the same region, meaning they came from elsewhere, not from Andromeda itself. It also means they’re older since there were fewer heavy elements in the early Universe than there are now. Lewis named the collection of globulars the Dulai Structure, which means black stream in Welsh.
LIDAR is to autonomous vehicles, as echolocation and sonar are to bats and dolphins.
Third-generation (L3) LIDAR provides Advanced Driver Assistance Systems (ADAS) with datasets and imaging to support full autonomy.