Menu

Blog

Page 4318

Nov 14, 2022

The Exact Number of Computers Needed to Simulate the Human Brain is Almost Inconceivable

Posted by in categories: computing, space

Yes, conceivably. And if/when we achieve the levels of technology necessary for simulation, the universe will become our playground.

Nov 14, 2022

What is the shape of the universe?

Posted by in categories: cosmology, physics

The universe may seem shapeless because it is so vast, but it does have a form that astronomers can observe. So, what is it shaped like?

Physicists think the universe is flat. Several lines of evidence point to this flat universe: light left over from the Big Bang, the rate of expansion of the universe at different locations, and the way the universe “looks” from different angles, experts told Live Science.

Nov 14, 2022

Forever Young: Scientists Reveal the Secret to a Strange Animal’s Eternal Youth

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Sea anemones are seemingly immortal animals. They seem to be immune to aging and the negative impacts that humans experience over time. However, the exact reasons for their eternal youth are not completely understood.

The genetic fingerprint of the sea anemone Nematostella vectensis reveals that members of this incredibly ancient animal phylum employ the same gene cascades for neural cell differentiation as more complex organisms. These genes are also in charge of maintaining the balance of all cells in the organism during the anemone’s lifetime. These findings were recently published in the journal Cell Reports by a group of developmental biologists headed by Ulrich Technau of the University of Vienna.

Almost all animal organisms are made up of millions, if not billions, of cells that join together in intricate ways to create specific tissues and organs, which are made up of a range of cell types, such as a variety of neurons and gland cells. However, it is unclear how this critical balance of diverse cell types emerges, how it is regulated, and if the different cell types of different animal organisms have a common origin.

Nov 14, 2022

New Technologies that May be in the Cards

Posted by in categories: biotech/medical, cyborgs, drones, education, nanotechnology, nuclear energy, robotics/AI, satellites

Visit our sponsor, Brilliant: https://brilliant.org/IsaacArthur/
Every day brings us new technological advances, today we’ll explore many of those of such as robotics, automation, rapid delivery, education, medical science, nanotechnology, and more.

Episodes referenced in the Episode:
Power Satellites: https://www.youtube.com/watch?v=eBCbdThIJNE
Fusion Power: https://www.youtube.com/watch?v=ChTJHEdf6yM
Quiet Revolution: https://www.youtube.com/watch?v=jvH-7XX6pkk.
The Santa Claus Machine: https://www.youtube.com/watch?v=FmgYoryG_Ss.
Synthetic Meat: https://www.youtube.com/watch?v=_NULFAItoBs.
Cyborgs: https://www.youtube.com/watch?v=cGYKCTFIZLI
Mind Augmentation: https://www.youtube.com/watch?v=aQpYOVvU17Y
Mind-Machine Interfaces: https://www.youtube.com/watch?v=OCLLzI4R3bc.
Life Extension https://www.youtube.com/watch?v=kKmdc2AuXec.
The Science of Aging: https://www.youtube.com/watch?v=RDpjv2z3dyE
Happily Ever After: https://www.youtube.com/watch?v=0ypfzvQ-Q2w.
Attack of the Drones: https://www.youtube.com/watch?v=6oZCUtgnQkE
Advanced Metamaterials: https://www.youtube.com/watch?v=s0UZ6-oeiIE
Portable Power: https://www.youtube.com/watch?v=ffXqcf48D9Q
The Nuclear Option: https://www.youtube.com/watch?v=3aBOhC1c6m8
Moon: Industrial Complex: https://www.youtube.com/watch?v=y47MMNqKGxE
Machine Rebellion: https://www.youtube.com/watch?v=jHd22kMa0_w.
The Paperclip Maximizer: https://www.youtube.com/watch?v=3mk7NVFz_88
Technological Stagnation: Coming Soon.
Non-Carbon Based Life: Coming Soon.

Continue reading “New Technologies that May be in the Cards” »

Nov 14, 2022

Scientists Discover The “Angel Particle” Which Is Both Matter And Antimatter At The Same Time

Posted by in category: particle physics

Scientists have discovered proof of a strange particle that strangely enough is also its own antiparticle. Even though it was initially postulated 80 years ago, it now seems that it just could be true.

Scientists from the University of California and Stanford University in California performed the research that was published in the journal Science. A particle might have its own antiparticle, according to a notion initially put out in 1937 by Italian scientist Ettore Majorana (who suddenly vanished in 1938). According to him, certain particles in the fermion class, which includes protons, electrons, and neutrons, ought to have unique antiparticles. These particles later came to be known as Majorana particles.

A particle with the same mass as a normal particle but the opposite electric or magnetic properties is said to be an antiparticle. The positron, for instance, is the antiparticle of the electron. If the two come into contact, they destroy one another.

Nov 14, 2022

10 Important Dates in Pluto History

Posted by in category: space

This Encyclopedia Britannica list highlights 10 important dates in the exploration of Pluto, from its discovery in 1930 to the flyby of New Horizons in 2015 and beyond.

Nov 14, 2022

Disremembering-Prelude

Posted by in category: biotech/medical

Art&science.


In “The Art of Memory”- a 1966 Non-fiction book by British historian, Frances Yates, she explained that artificial memory depended upon the recollection of images. Artificial memory was a kind of “inner writing” that the orator reviewed while presenting a speech, observing the places and their contents, the images, and recovering the memories for things (the subject matter) that those images represented.

Continue reading “Disremembering-Prelude” »

Nov 14, 2022

Two Plasma Accelerators Become One

Posted by in category: futurism

A new type of plasma accelerator combines two previous methods of producing an electron beam into one compact design.

Nov 14, 2022

Wormholes Could Be Hiding in Plain Sight

Posted by in category: cosmology

Predictions indicate that wormholes and black holes may have nearly identical polarized light spectra, making these astrophysical objects difficult to distinguish.

Nov 14, 2022

Predicting Black Hole Radio-Wave Hot Spots

Posted by in categories: cosmology, physics

Characterized by just three parameters—mass, spin, and charge—black holes could be considered one of the Universe’s simpler astrophysical objects. Yet, the number of open problems related to how the dark behemoths behave also marks them as one of the most enigmatic. One puzzle is why the plasma around black holes glows so brightly. Now, in 3D simulations of the magnetic fields within this plasma, Benjamin Crinquand of Princeton University and colleagues think they have found the answer: the breaking and reconnecting of magnetic-field lines [1]. The simulations predict that, under certain conditions, magnetic-field instabilities can induce radio-wave hot spots that rotate around the shadow of the black hole. This prediction could be tested by future versions of the Event Horizon Telescope (EHT)—the network of radio dishes used to capture the first black hole images (see Research News: First Image of the Milky Way’s Black Hole).

There are several mechanisms that physicists think could be behind a black hole’s light. One of those is so-called accretion power, where friction-like forces in the infalling plasma heat the plasma, leading to the emission of photons. Models of this process predict constant emission signals, which doesn’t seem to fit with observations of high-intensity bursts of gamma rays from black holes.

Another possibility—and the one that Crinquand and his colleagues consider—is that the energy needed to create this light is extracted from the magnetic field that threads through the plasma. When the lines associated with this field break apart and then reconnect—a process known as magnetic reconnection—magnetic-field energy can convert into plasma-kinetic energy that is then emitted as photons. This model would not replace the accretion one, but act in tandem with it.