Toggle light / dark theme

You can buy Universe Sandbox 2 game here: http://amzn.to/2yJqwU6

Hello and welcome to What Da Math!
In this video, we will talk about the planets we discovered in 2018 that seem to be in a galaxy far away.

The article is here: http://iopscience.iop.org/article/10.3847/2041-8213/aaa5fb/meta.

Support this channel on Patreon to help me make this a full time job:

Logic gates are the fundamental components of computer processors. Conventional logic gates are electronic—they work by shuffling around electrons—but scientists have been developing light-based optical logic gates to meet the data processing and transfer demands of next-generation computing.

New optical chirality developed by researchers at Aalto University operate about a million times faster than existing technologies, offering ultrafast processing speeds.

The new approach uses circularly polarized light as the . The logic gates are made from crystalline materials that are sensitive to the handedness of a circularly polarized light beam—that is, the light emitted by the crystal depends on the handedness of the input beams. This serves as the basic building block for one type of logic gate (XNOR), and the remaining types of logic gates are built by adding filters or other optical components.

A galaxy that has taunted astronomers since they first detected a hint of its presence more than 20 years ago has finally emerged from hiding.

It’s called HIPASS J1131-31, or Peekaboo, and it is located just 22 million light-years away. And it was so hard to see because it’s teeny tiny and obscured by a bright star in the Milky Way that sits almost directly in front of it.

Through a collaborative effort that involved space-and ground-based telescopes, scientists have learned that the extremely small Peekaboo is also extremely young and close – offering a snapshot of galactic infancy.

In the cons column, quantum computers are hard to use, require a very controlled set up to operate, and have to contend with “decoherence” or losing their quantum state which gives weird results. They’re also rare, expensive, and for most tasks, way less efficient than a traditional computer.

Still, a lot of these issues can be offset by combining a quantum computer with a traditional computer, just as VTT has done. Researchers can create a hybrid algorithm that has LUMI, the traditional supercomputer, handle the parts it does best while handing off anything that could benefit from quantum computing to HELMI. LUMI can then integrate the results of HELMI’s quantum calculations, perform any additional calculations necessary or even send more calculations to HELMI, and return the complete results to the researchers.

Finland is now one of few nations in the world with a quantum computer and a supercomputer, and LUMI is the most powerful quantum-enabled supercomputer. While quantum computers are still a way from being broadly commercially viable, these kinds of integrated research programs are likely to accelerate progress. VTT is currently developing a 20-qubit quantum computer with a 50-qubit upgrade planned for 2024.

In a new study published by Alzheimer’s & Dementia, scientists from Rush University and Tufts University were the first to compare cognitive decline factors to vitamin D concentrations not only in the blood, but in the brain as well.

Researchers analyzed participants of the Rush Memory and Aging Project (MAP)—an ongoing longitudinal study that aims to identify risk factors for Alzheimer’s disease and other cognitive decline disorders—before and after death to see how their vitamin D levels impacted cognitive function in their later years.

Free of known dementia at the time of enrollment, all MAP participants agreed to participate in annual evaluations and organ donation when they died. In this study, the average age of participants was 92 at the time of death.

A large universal quantum computer is still an engineering dream, but machines designed to leverage quantum effects to solve specific classes of problems—such as D-wave’s computers—are alive and well. But an unlikely rival could challenge these specialized machines: computers built from purposely noisy parts.

This week at the IEEE International Electron Device Meeting (IEDM 2022), engineers unveiled several advances that bring a large-scale probabilistic computer closer to reality than ever before.

Quantum computers are unrivaled for any algorithm that relies on quantum’s complex amplitudes. “But for problems where the numbers are positive, sometimes called stochastic problems, probabilistic computing could be quite competitive,” says Supriyo Datta, professor of electrical and computer engineering at Purdue University and one of the pioneers of probabilistic computing.

Summary: Researchers discover changes to the brain’s salience network occur when a person experiences trauma.

Source: University of Rochester.

Exposure to trauma can be life-changing—and researchers are learning more about how traumatic events may physically change our brains. But these changes are not happening because of physical injury; rather, the brain appears to rewire itself after these experiences.