Toggle light / dark theme

Standing among solar arrays and power grid equipment at the National Renewable Energy Laboratory (NREL), you might hear a faint, distorted melody buzzing from somewhere. You are not hallucinating—that gray box really is singing the Star Wars Theme, or the ice cream truck song, or Chopin’s Waltz in A minor. Power system engineers are just having some fun with an NREL capability that prevents stability problems on the electrical grid.

Usually, the engineers send another kind of waveform through the inverters and load banks: megawatts of power and voltage vibrations at many frequencies. The purpose of their research is to see how and the grid interact—to get them “in tune” and prevent dangerous electrical oscillations that show up like screechy feedback or a booming sub-bass.

The engineers can do this analysis at with NREL hardware using the lab’s advanced impedance measurement system, and they have also produced a commercially available software called the Grid Impedance Scan Tool or GIST that can do the same with simulated power on device models, allowing any manufacturer or grid operator to certify grid with renewable energy resources.

After six decades we have finally reached controlled fusion “ignition.” Here is how it works and what it means (and doesn’t mean):

At the Lawrence Livermore National Lab (LLNL) the National Ignition Facility (NIF) starts with the Injection Laser System (ILS), a ytterbium-doped optical fiber laser (Master Oscillator) that produces a single very lower power, 1,053 nanometer (Infrared Light) beam. This single beam is split into 48 Pre-Amplifiers Modules (PAMs) that create four beams each (192 total). Each PAM conducts a two-stage amplification process via xenon flash lamps.


Surpassing energy breakeven at US facility constitutes a “Wright brothers moment” for fusion research, say researchers.

The cosmic optical background (COB) is the visible light emitted by all sources outside of the Milky Way. This faint glow of light, which can only be observed using very precise and sophisticated telescopes, could help astrophysics to learn more about the origins of the universe and what lies beyond our galaxy.

Last year, physicists working at different institutes across the United States published the most precise COB measurements collected so far, gathered by the New Horizons spacecraft, an interplanetary space probe launched by NASA over a decade ago. These measurements suggested that the COB is two times brighter than theoretical predictions.

Researchers at Johns Hopkins University have recently carried out a theoretical study exploring the possibility that this observed excess light could be caused by the of a hypothesized type of dark matter particles, known as axions. In their paper, published in Physical Review Letters, they showed that axions with masses between 8 and 20 eV could potentially account for the excess COB flux measured by the New Horizons team.

After six decades we have finally reached controlled fusion “ignition.” Here is how it works and what it means (and doesn’t mean):

At the Lawrence Livermore National Lab (LLNL) the National Ignition Facility (NIF) starts with the Injection Laser System (ILS), a ytterbium-doped optical fiber laser (Master Oscillator) that produces a single very lower power, 1,053 nanometer (Infrared Light) beam. This single beam is split into 48 Pre-Amplifiers Modules (PAMs) that create four beams each (192 total). Each PAM conducts a two-stage amplification process via xenon flash lamps.


Self-coding and self-updating AI algorithms appear to be on the horizon. There are talks about Pitchfork AI, a top-secret Google Labs project that can independently code, refactor, and use both its own and other people’s code.

This type of AI has actually been discussed for a long time, and DeepMind mentioned it at the beginning of the year along with the AlphaCode AI, which, according to them, “code programs in competitive level” as a middle developer. However, since February, there hasn’t been any more interesting news.