Toggle light / dark theme

Older women heal bone fractures slower than men. Now a team has found that a single, localized delivery of estrogen to a fracture can speed up healing in postmenopausal mice. The findings could have implications for the way fractures in women are treated in the future.

Over 250,000 hip fractures occur each year in adults aged 65 or older in the U.S., three-quarters of which are female. Within a year, between 15 and 36% of hip fracture patients will die. While staggering, the is unsurprising given that more women than men suffer from osteoporosis, a disease that weakens the bones. And yet, only recently has the scientific community shifted their focus to understanding this difference.

“The majority of stem cell research is done on male animals. There’s very little research that has actually been done on females,” said Wu Tsai Alliance member Charles Chan, Ph.D., an assistant professor of surgery at Stanford University and co-senior author of the paper published Oct. 30 in Nature Communications. “The research is long overdue, especially the question of why women heal differently from men.”

Individuals with long COVID, sometimes referred to as “long-haulers,” experience symptoms that may persist for weeks, months, or even years after their acute viral infection. While symptoms vary widely, a common complaint among patients is “brain fog”—a colloquial term for significant, persistent cognitive deficits, with consistent impairment of executive functioning and working memory.

Long-haulers may experience a lack of mental clarity, poor focus and concentration, memory problems, difficulty with multi-tasking, and more. Brain fog can be debilitating, but there currently are no treatment options that are approved for the condition.

While the number of patients they studied is too small for their results to be definitive, Yale researchers, using their extensive experience with two existing medications, have published initial evidence that those drugs, given together, can mitigate or even eliminate brain fog.

Material scientists at RIKEN have created a self-healing polymer by using an off-the-shelf compound for the first time. The strategy they used is promising for improving the durability and minimizing the environmental impact of various commercial polymers for a wide range of applications.

Polymers capable of healing themselves when damaged would last longer and thus reduce costs and the burden on the environment. Current strategies for producing self-healing polymers mainly employ reversible , but this usually entails complex synthesis processes. Furthermore, self-healing mechanisms based on chemical reactions may not work in certain environments such as in water and acidic and alkaline solutions.

Ideally, would like to produce polymers that self-heal under a wide range of conditions, from readily available materials, using simple synthesis processes.

Deep-learning models have proven to be highly valuable tools for making predictions and solving real-world tasks that involve the analysis of data. Despite their advantages, before they are deployed in real software and devices such as cell phones, these models require extensive training in physical data centers, which can be both time and energy consuming.

Researchers at Texas A&M University, Rain Neuromorphics and Sandia National Laboratories have recently devised a new system for deep learning models more efficiently and on a larger scale. This system, introduced in a paper published in Nature Electronics, relies on the use of new training algorithms and memristor crossbar , that can carry out multiple operations at once.

“Most people associate AI with health monitoring in smart watches, face recognition in smart phones, etc., but most of AI, in terms of energy spent, entails the training of AI models to perform these tasks,” Suhas Kumar, the senior author of the study, told TechXplore.

Structuring, Financing & Growing Novel Longevity Ventures — Dr. Tobias Reichmuth Ph.D., Founding Partner, Maximon


Dr. Tobias Reichmuth, Ph.D. is Founding Partner at Maximon (https://www.maximon.com/), The Longevity Company Builder, which empowers entrepreneurs to build impactful, science-based and scalable companies providing healthy aging and rejuvenation solutions.

Maximon recently announced the launch of their 100 million CHF Longevity Co-Investment Fund, which will be looking to invest up to CHF 10 million per company, which allows them to finance up to 10–12 start-ups in this fast growing industry over the next four years.

MSM and Experts fail to see the logic in how Elon Musk is taking over Twitter. They think it’s chaos, a mess, he’s out of his depth. But Elon is just working AGILE, and AGILE always seems like a mess to onlookers used to traditional work!
The video describes Elon’s Agile Takeover of Twitter and shows the opportunity worth BILLION$ that Elon Musk has ALREADY unlocked.

Please consider supporting the channel:
🔹Join my PATREON for Ad-Free Early-Access to videos plus Patreon-Exclusive newsletter: http://www.patreon.com/ConnectingODots.
🔹Become a YouTube channel member: https://www.youtube.com/ConnectingTheDotsOK/join.
🔹Or CLICK the THANKS🙏 BUTTON ABOVE

🐦Follow me on TWITTER: https://twitter.com/ConnectingODots.
🔹PLEASE SHARE this video on Social MEDIA, LIKE and SUBSCRIBE
Your support means a lot!❤️

This book changed my life — Think and Grow Rich https://amzn.to/3Y582Kb.

Summary: The integrity of cholinergic pathways may indicate very early changes in the brain associated with Alzheimer’s disease.

Source: Karolinska Institute.

A new collaborative study from Karolinska Institutet, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), and Czech Technical University suggests a novel imaging marker of brain connectivity might be a very early indicator of pathological changes in Alzheimer’s disease.

Intel Labs and the Perelman School of Medicine at the University of Pennsylvania (Penn Medicine) have completed a joint research study using federated learning – a distributed machine learning (ML) artificial intelligence (AI) approach – to help international healthcare and research institutions identify malignant brain tumours.

The largest medical federated learning study to date with an unprecedented global dataset examined from 71 institutions across six continents, the project demonstrated the ability to improve brain tumour detection by 33%.

“Federated learning has tremendous potential across numerous domains, particularly within healthcare, as shown by our research with Penn Medicine,” says Jason Martin, principal engineer at Intel Labs. “Its ability to protect sensitive information and data opens the door for future studies and collaboration, especially in cases where datasets would otherwise be inaccessible.