Toggle light / dark theme

Year 2021 😗😁


MIT engineers, in collaboration with scientists at Cancer Research UK Manchester Institute, have developed a new way to grow tiny replicas of the pancreas, using either healthy or cancerous pancreatic cells. Their new models could help researchers develop and test potential drugs for pancreatic cancer, which is currently one of the most difficult types of cancer to treat.

Using a specialized gel that mimics the extracellular environment surrounding the pancreas, the researchers were able to grow pancreatic “organoids,” allowing them to study the important interactions between pancreatic tumors and their environment. Unlike some of the gels now used to grow tissue, the new MIT gel is completely synthetic, easy to assemble and can be produced with a consistent composition every time.

“The issue of reproducibility is a major one,” says Linda Griffith, the School of Engineering Professor of Teaching Innovation and a professor of biological engineering and mechanical engineering. “The research community has been looking for ways to do more methodical cultures of these kinds of organoids, and especially to control the microenvironment.”

Year 2019 😗😁


Hepatology and drug development for liver diseases require in vitro liver models. Typical models include 2D planar primary hepatocytes, hepatocyte spheroids, hepatocyte organoids, and liver-on-a-chip. Liver-on-a-chip has emerged as the mainstream model for drug development because it recapitulates the liver microenvironment and has good assay robustness such as reproducibility. Liver-on-a-chip with human primary cells can potentially correlate clinical testing. Liver-on-a-chip can not only predict drug hepatotoxicity and drug metabolism, but also connect other artificial organs on the chip for a human-on-a-chip, which can reflect the overall effect of a drug. Engineering an effective liver-on-a-chip device requires knowledge of multiple disciplines including chemistry, fluidic mechanics, cell biology, electrics, and optics.

Year 2021


Brain organoids derived from human pluripotent stem cells can model human brain development and disease, though current culture systems fail to ensure reliable production of high-quality organoids. Here the authors combine human brain extracellular matrix and culture in a microfluidic device to promote structural and functional maturation of human brain organoids.

The Big Bang, traditionally considered the birth of the universe about 14 billion years ago, is being questioned. Physicist Bruno Bento and his team have proposed compelling research suggesting the universe may have always existed, and the Big Bang may merely be a significant event in its continuous evolution.

Bruno Bento and his colleagues set out to examine what the universe’s inception might have looked like without a Big Bang singularity. They grappled with contradictions arising when comparing accepted theories, particularly those dealing with quantum physics and general relativity. While quantum physics has accurately described three of the four fundamental forces of nature, it struggles to incorporate gravity. On the other hand, general relativity offers a comprehensive explanation of gravity, but falters when dealing with black holes’ centers and the universe’s genesis.

These contentious areas, termed “singularities,” are points in space-time where established physical laws cease to apply. Intriguingly, computations indicate an immense gravitational pull within singularities, even on a minuscule scale.