Technology has already changed our world. I mean, who knew that we’d be able to flick a switch to illuminate the darkness rather than lighting a candle? It’s wild. But the technology we have today and will have in the future is absolutely insane. From 3D printing houses to robotics to help us in our jobs, here are 20 emerging technologies that will change our world.
We discuss how uncertainty underwrites exploration and epistemic foraging from the perspective of active inference: a generic scheme that places pragmatic (utility maximization) and epistemic (uncertainty minimization) imperatives on an equal footing – as primary determinants of proximal behavior. This formulation contextualizes the complementary motivational incentives for reward-related stimuli and environmental uncertainty, offering a normative treatment of their trade-off.
Life as we know it is carbon-based, but does it have to be this way? There’s another element on the periodic table that shares some of the key properties of carbon but is far more abundant on most planets. I’m talking about silicon. So is there silicon-based life out there?
Our lifespans might feel like a long time by human standards, but to the Earth it’s the blink of an eye. Even the entirety of human history represents a tiny slither of the vast chronology for our planet. We often think about geological time when looking back into the past, but today we look ahead. What might happen on our planet in the next billion years?
Written and presented by Prof David Kipping, edited by Jorge Casas.
THANK-YOU to our supporters D. Smith, M. Sloan, C. Bottaccini, D. Daughaday, A. Jones, S. Brownlee, N. Kildal, Z. Star, E. West, T. Zajonc, C. Wolfred, L. Skov, G. Benson, A. De Vaal, M. Elliott, B. Daniluk, M. Forbes, S. Vystoropskyi, S. Lee, Z. Danielson, C. Fitzgerald, C. Souter, M. Gillette, T. Jeffcoat, J. Rockett, D. Murphree, S. Hannum, T. Donkin, K. Myers, A. Schoen, K. Dabrowski, J. Black, R. Ramezankhani, J. Armstrong, K. Weber, S. Marks, L. Robinson, S. Roulier, B. Smith, G. Canterbury, J. Cassese, J. Kruger, S. Way, P. Finch, S. Applegate, L. Watson, E. Zahnle, N. Gebben, J. Bergman, E. Dessoi, J. Alexander, C. Macdonald, M. Hedlund, P. Kaup, C. Hays, W. Evans, D. Bansal, J. Curtin, J. Sturm, RAND Corp., M. Donovan, N. Corwin, M. Mangione, K. Howard, L. Deacon, G. Metts, G. Genova, R. Provost, B. Sigurjonsson, G. Fullwood, B. Walford, J. Boyd, N. De Haan, J. Gillmer, R. Williams, E. Garland, A. Leishman, A. Phan Le, R. Lovely, M. Spoto, A. Steele, M. Varenka, K. Yarbrough & F. Demopoulos.
A device developed at the University of Florida for the U.S. military provides protection from mosquitos for an extended period and requires no heat, electricity or skin contact.
The controlled-release passive device was designed by Nagarajan Rajagopal, a Ph.D. candidate and Dr. Christopher Batich in UF’s Department of Materials Science and Engineering in the Herbert Wertheim College of Engineering. It recently was tested successfully in a four-week semi-field study at the U.S. Department of Agriculture in Gainesville in a collaboration with Dr. Daniel Kline, Dr. Jerry Hogsette and Adam Bowman from the USDA’s Center for Medical, Agricultural and Veterinary Entomology.
Results showed the controlled release of the repellent transfluthrin was effective in preventing multiple species of mosquitos from entering the testing site. Transfluthrin is an organic insecticide considered to be safe for humans and animals.