Menu

Blog

Page 4086

Sep 9, 2022

Do I sound ill? — All About Vocal Biomarkers Diagnosing Illnesses

Posted by in categories: biotech/medical, robotics/AI

Vocal biomarkers have become a buzzword during the pandemic, but what does it mean and how could it contribute to diagnostics?

What if a disease could be identified over a phone call?

Continue reading “Do I sound ill? — All About Vocal Biomarkers Diagnosing Illnesses” »

Sep 9, 2022

The US puts an end to any plans Intel may have to make more chips in China

Posted by in category: computing

Update 8/9/22: This story previously referenced Intel’s fab in Dalian, China, which has since been sold to SK Hynix. Intel continues to operate assembly plants in Chengdu, China.

The US is banning some major US chipmaking companies from building advanced technology facilities’’ in China, the Biden administration has announced (opens in new tab).

Sep 9, 2022

Lattice distortion of perovskite quantum dots induces coherent quantum beating

Posted by in categories: chemistry, energy, quantum physics

A research group led by Prof. WU Kaifeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Dr. Peter C. Sercel from the Center for Hybrid Organic Inorganic Semiconductors for Energy, recently reported the utilization of lattice distortion in lead halide perovskite quantum dots (QDs) to control their exciton fine structure.

The study was published in Nature Materials (“Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI 3 perovskite quantum dots”).

Lattice distortion of perovskite quantum dots induces coherent quantum beating. (Image: DICP)

Sep 9, 2022

Stretchable, self-powered bioelectronics mimic skin in form and function

Posted by in categories: biotech/medical, computing, engineering, health, nanotechnology

Skin-like electronics could seamlessly integrate with the body for applications in health monitoring, medication therapy, implantable medical devices, and biological studies.

With the help of the Polsky Center for Entrepreneurship and Innovation, Sihong Wang, an assistant professor of molecular engineering at the University of Chicago’s Pritzker School of Molecular Engineering, has secured patents for the building blocks of these novel devices.

Drawing on innovation in the fields of semiconductor physics, solid mechanics, and energy sciences, this work includes the creation of stretchable polymer semiconductors and transistor arrays, which provide exceptional electrical performance, high semiconducting properties, and mechanical stretchability. Additionally, Wang has developed triboelectric nanogenerators as a new technology for harvesting energy from a user’s motion—and designed the associated energy storage process.

Sep 9, 2022

Effective altruism’s most controversial idea

Posted by in category: futurism

Longtermism is influencing billionaire philanthropy and shaping politics. Should it guide the future of humanity?

Sep 9, 2022

Automatically optimizing execution of unfamiliar tensor operations

Posted by in categories: robotics/AI, transportation

At this year’s Conference on Machine Learning and Systems (MLSys), we and our colleagues presented a new auto-scheduler called DietCode, which handles dynamic-shape workloads much more efficiently than its predecessors. Where existing auto-encoders have to optimize each possible shape individually, DietCode constructs a shape-generic search space that enables it to optimize all possible shapes simultaneously.

We tested our approach on a natural-language-processing (NLP) task that could take inputs ranging in size from 1 to 128 tokens. When we use a random sampling of input sizes that reflects a plausible real-world distribution, we speed up the optimization process almost sixfold relative to the best prior auto-scheduler. That speedup increases to more than 94-fold when we consider all possible shapes.

Despite being much faster, DietCode also improves the performance of the resulting code, by up to 70% relative to prior auto-schedulers and up to 19% relative to hand-optimized code in existing tensor operation libraries. It thus promises to speed up our customers’ dynamic-shaped machine learning workloads.

Sep 9, 2022

Quantum Dots Reveal Spin Transport Properties of DNA Sensors

Posted by in categories: biotech/medical, quantum physics

Due to their self-assembly function, DNA sensors have gained much attention as next-generation sensors that require an extremely low power supply.

Study: Spin transport properties in DNA & electrically doped iron QD organo-metallic junction. Image Credit: marie_mi/Shutterstock.com.

Scientists have recently used iron (Fe) quantum dots (QD) electrodes to determine the spin transport properties and quantum scattering transmission characteristics of DNA sensors at room temperature. This study is available in Materials Today: Proceedings.

Sep 9, 2022

Scientists create nano-pipes that are two million times smaller than an ant

Posted by in categories: biotech/medical, nanotechnology

Explaining the potential of nanotubes further, one of the lead researchers and associate professor at Johns Hopkins University (JHU), Rebecca Schulman told IE, “Tinier plumbing might help us analyze individual molecules, which could help us make better drugs or enzymes, separate toxins, or even create better batteries by designing the conduits that ions flow through rather than using a porous material.”

She believes that although these technologies are still 10+ years away, their foundation is in things like nano-plumbing and being able to precisely measure and control the pipes the plumbing is made of.

Continue reading “Scientists create nano-pipes that are two million times smaller than an ant” »

Sep 9, 2022

Two atomic clocks have been quantum entangled for the first time

Posted by in categories: cosmology, quantum physics

Researchers have quantum entangled atomic clocks, allowing them to be synchronised more accurately. Such entangled clocks could be used to study dark matter and gravity more precisely.

Sep 9, 2022

With Stable Diffusion, you may never believe what you see online again

Posted by in categories: innovation, robotics/AI

AI image generation is here in a big way. A newly released open source image synthesis model called Stable Diffusion allows anyone with a PC and a decent GPU to conjure up almost any visual reality they can imagine. It can imitate virtually any visual style, and if you feed it a descriptive phrase, the results appear on your screen like magic.

Some artists are delighted by the prospect, others aren’t happy about it, and society at large still seems largely unaware of the rapidly evolving tech revolution taking place through communities on Twitter, Discord, and Github. Image synthesis arguably brings implications as big as the invention of the camera—or perhaps the creation of visual art itself. Even our sense of history might be at stake, depending on how things shake out. Either way, Stable Diffusion is leading a new wave of deep learning creative tools that are poised to revolutionize the creation of visual media.