Toggle light / dark theme

Extreme cosmic events such as colliding black holes or the explosions of stars can cause ripples in spacetime, so-called gravitational waves. Their discovery opened a new window into the universe. To observe them, ultra-precise detectors are required, but designing them remains a major scientific challenge for humans.

Researchers at the Max Planck Institute for the Science of Light (MPL) have been working on how an artificial intelligence system could explore an unimaginably vast space of possible designs to find entirely new solutions. The results were recently published in the journal Physical Review X.

More than a century ago, Einstein theoretically predicted gravitational waves. They could only be directly detected in 2016 because the development of the necessary detectors was extremely complex.

Researchers from Georgia Institute of Technology (Georgia Tech) have developed a microscopic brain sensor which is so tiny that it can be placed in the small gap between your hair follicles on the scalp, slightly under the skin. The sensor is discreet enough not to be noticed and minuscule enough to be worn comfortably all day.

Brain sensors offer high-fidelity signals, allowing your brain to communicate directly with devices like computers, augmented reality (AR) glasses, or robotic limbs. This is part of what’s known as a Brain-Computer Interface (BCI).

Researchers from the Department of Energy’s Oak Ridge National Laboratory have developed a new application to increase efficiency in memory systems for high-performance computing.

Rather than allow data to bog down traditional memory systems in supercomputers and impact performance, the team from ORNL, along with researchers from the University of Tennessee, Knoxville, created a framework to manage data more efficiently with memory systems that employ more complex structures. Research papers detailing their work were recently accepted in ACM Transactions on Architecture and Code Optimization and the International Journal of High-Performance Computing Applications.

Working under the Exascale Computing Project, or ECP, a multi-year software research, development and deployment project managed by DOE, ORNL senior computer science researcher Terry Jones and his team titled their work the “ECP Simplified Interface to Complex Memories,” or SICM, Project.

Researchers at the University of Cologne and University Hospital Cologne have determined that the novel mRNA-based COVID-19 vaccines not only induce acquired immune responses such as antibody production, but also cause persistent epigenetic changes in innate immune cells.

The study, “Persistent epigenetic memory of SARS-CoV-2 mRNA vaccination in monocyte-derived macrophages,” led by Professor Dr. Jan Rybniker, who heads the Division of Infectious Diseases at University Hospital Cologne and is a principal investigator at the Center for Molecular Medicine Cologne (CMMC), and Dr. Robert Hänsel-Hertsch, principal investigator at the CMMC, was published in Molecular Systems Biology.

The immune system comprises two immunity strategies: the innate and the acquired (adaptive) immune system. The innate immune system provides general protection from pathogens and must react quickly. The adaptive immune system adapts to new pathogens and is highly specific in its response. Both systems work closely together.

A new high-tech implant has shown “promise” in fighting some of the deadliest forms of cancer.

The cancer-fighting device safely triggers “potent” immune responses against hard-to-treat cancers, including metastatic melanoma, and pancreatic and colorectal tumors, say American scientists.

A team of researchers from the Rice Biotech Launch Pad at Rice University in Houston developed the implantable “cytokine factory”

To ensure that information maintains a high quality and isn’t overwhelmed by noise, optical amplifiers are essential. The data transmission capacity of an optical communication system is largely determined by the amplifier’s bandwidth, which refers to the range of light wavelengths it can handle.

“The amplifiers currently used in optical communication systems have a bandwidth of approximately 30 nanometers. Our amplifier, however, boasts a bandwidth of 300 nanometers, enabling it to transmit ten times more data per second than those of existing systems,” explains Peter Andrekson, Professor of Photonics at Chalmers and lead author of the study published in Nature.


The rapidly increasing data traffic is placing ever greater demands on the capacity of communication systems. In an article published in the prestigious journal Nature, a research team from Chalmers University of Technology, in Sweden, introduces a new amplifier that enables the transmission of ten times more data per second than those of current fiber-optic systems. This amplifier, which fits on a small chip, holds significant potential for various critical laser systems, including those used in medical diagnostics and treatment.

The advancement of AI technology, the growing popularity of streaming services, and the proliferation of new smart devices are among the factors driving the expected doubling of data traffic by 2030. This surge is heightening the demand for communication systems capable of managing vast amounts of information.

Currently, optical communication systems are employed for the internet, telecommunications, and other data-intensive services. These systems utilise light to transmit information over long distances. The data is conveyed through laser pulses that travel at high speeds through optical fibers, which are composed of thin strands of glass.

Purdue University researchers have developed a new type of two-dimensional (2D) nanomaterial called a tungsten carbide MXene. This small but mighty material could be used to produce hydrogen fuel for electric vehicles, possibly becoming the key to a more reliable future.

Generation of hydrogen (H₂) by means of photocatalysis has been at the forefront of research since the 1970s because it can potentially fulfill the demand for this green fuel by employing abundant solar light as the only energy source. It encompasses mainly two approaches: overall water splitting and selective dehydrogenation of organic compounds.