Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Ultrasound helmet enables deep brain stimulation in people without surgery

An ultrasound device that can precisely stimulate areas deep in the brain without surgery has been developed by researchers from UCL and the University of Oxford, opening up new possibilities for neurological research and treatment of disorders such as Parkinson’s disease.

A paper describing this work appears in Nature Communications.

Scientists have long been looking for a way to modulate brain function, which could improve our understanding of how the brain works and help to treat , using non-invasive methods that don’t involve surgery. One technology that could help is transcranial ultrasound stimulation (TUS), which was recently discovered to be able to modulate the activity of neurons (the brain’s key communication cells) by delivering gentle mechanical pulses that influence how these cells send signals.

Researchers uncover critical genetic drivers of the gut’s ‘nervous system’ development

Vanderbilt researchers, including those from the Vanderbilt Brain Institute, have made significant strides in understanding how the enteric nervous system—sometimes called the “brain” of the gut—forms and functions.

In a study published in Cellular and Molecular Gastroenterology and Hepatology, the lab of principal investigator, Michelle Southard-Smith, sheds light on how the SOX10 protein contributes to the development of gut cells that play a role in gastrointestinal motility, or how food moves through the digestive system.

The paper is titled “Single Cell Profiling in the Sox10Dom Hirschsprung Mouse Implicates Hox genes in Enteric Neuron Trajectory Allocation.”

A fiber optic cable spied on Greenland’s glaciers. It found an alarming problem

One of the buzziest technologies in modern science may be running right under your feet. Fiber optic cables bring you the internet as data-rich pulses of light, but they also detect signals from the surrounding environment: Researchers can analyze the light that’s scattered when a volcanic eruption or tsunami jostles the wiring. Known as distributed acoustic sensing, or DAS, the technique is so sensitive that it can track your footsteps as you walk over a cable, and may one day even warn you of an impending earthquake.

Now, researchers have laid a fiber optic cable on the seafloor near a glacier in Greenland, revealing in unprecedented detail what happens during a calving event, when chunks of ice drop into the ocean. That, in turn, could help solve a long-standing conundrum and better understand the hidden processes driving the rapid deterioration of the island’s ice sheet, which would add 23 feet to sea levels if it disappeared.

Even before humans started changing the climate, Greenland’s glaciers were calving naturally. The island is covered in glaciers that slowly flow toward the ocean, breaking into icebergs that float out to sea. When temperatures were lower, the ice sheet was also readily regenerating as snow fell.

Human brains explore more to avoid losses than to seek gains

Researchers at the Weizmann Institute of Science traced a neural mechanism that explains why humans explore more aggressively when avoiding losses than when pursuing gains. Their work reveals how neuronal firing and noise in the amygdala shape exploratory decision-making.

Human survival has its origins in a delicate balance of versus exploitation. There is safety in exploiting what is known, the local hunting grounds, the favorite foraging location, the go-to deli with the familiar menu. Exploitation also involves the risk of over-reliance on the familiar to the point of becoming too dependent upon it, either through depletion or a change in the stability of local resources.

Exploring the world in the hope of discovering better options has its own set of risks and rewards. There is the chance of finding plentiful hunting grounds, alternative foraging resources, or a new deli that offers a fresh take on old favorites. And there is the risk that new hunting grounds will be scarce, the newly foraged berries poisonous, or that the meal time will be ruined by a deli that disappoints.

/* */