Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

AI system predicts early childhood cavities in individual teeth with high accuracy

Early childhood caries (ECC)—the world’s most prevalent chronic childhood disease—disproportionately targets specific teeth, a mystery that has remained unresolved until now.

A collaborative research team from the Faculty of Dentistry of the University of Hong Kong (HKU), Chinese Academy of Sciences (CAS-QIBEBT), Qingdao Stomatological Hospital, and Qingdao Women and Children’s Hospital has made a discovery that could revolutionize the prevention of childhood tooth decay.

The team has developed the world’s first artificial intelligence (AI) system capable of predicting early childhood caries risk for individual based on microbial characteristics, achieving an accuracy rate of more than 90%. The study is published in Cell Host & Microbe.

Tesla Robotaxi Changes Everything!

Tesla’s Robotaxi has the potential to revolutionize transportation and disrupt various industries, including car ownership, urban planning, and traditional car dealerships, with its autonomous driving technology and low-cost, hassle-free ride experience ## ## Questions to inspire discussion.

Transportation Revolution.

🚕 Q: How will Tesla’s Robotaxi network change urban transportation?

A: Tesla’s Robotaxi will make personal vehicle ownership obsolete in dense cities, offering rides at 25 cents per mile that are both cost-effective and convenient, eliminating the need for parking spaces.

🚗 Q: What makes Tesla’s Cybercab unique?

A: Cybercab is designed to be the most utilitarian vehicle ever built, featuring 50% fewer parts than the Model 3, making it highly scalable for millions of rides with wireless charging and autonomous capabilities.

Engineers turn toxic ancient tomb fungus into anti-cancer drug

Penn-led researchers have turned a deadly fungus into a potent cancer-fighting compound. After isolating a new class of molecules from Aspergillus flavus, a toxic crop fungus linked to deaths in the excavations of ancient tombs, the researchers modified the chemicals and tested them against leukemia cells. The result? A promising cancer-killing compound that rivals FDA-approved drugs and opens up new frontiers in the discovery of more fungal medicines.

“Fungi gave us penicillin,” says Sherry Gao, Presidential Penn Compact Associate Professor in Chemical and Biomolecular Engineering (CBE) and in Bioengineering (BE) and senior author of a new paper in Nature Chemical Biology on the findings. “These results show that many more medicines derived from natural products remain to be found.”

Earwax Biomarkers for Early Parkinson’s Disease Detection

Most treatments for Parkinson’s disease (PD) only slow disease progression. Early intervention for the neurological disease that worsens over time is therefore critical to optimize care, but that requires early diagnosis. Current tests, like clinical rating scales and neural imaging, can be subjective and costly. Now, researchers in ACS’ Analytical Chemistry report the initial development of a system that inexpensively screens for PD from the odors in a person’s earwax.

Previous research has shown that changes in sebum, an oily substance secreted by the skin, could help identify people with PD. Specifically, sebum from people with PD may have a characteristic smell because volatile organic compounds (VOCs) released by sebum are altered by disease progression — including neurodegeneration, systemic inflammation and oxidative stress.

However, when sebum on the skin is exposed to environmental factors like air pollution and humidity, its composition can be altered, making it an unreliable testing medium. But the skin inside the ear canal is kept away from the elements. So, Hao Dong, Danhua Zhu and colleagues wanted to focus their PD screening efforts on earwax, which mostly consists of sebum and is easily sampled.

Light-as-a-feather nanomaterial extracts drinking water from air

An international scientific collaboration has developed a novel nanomaterial to efficiently harvest clean drinking water from water vapor in the air. The nanomaterial can hold more than three times its weight in water and can achieve this far quicker than existing commercial technologies, features that enable its potential in direct applications for producing potable water from the air.

The collaboration is led by the Australian Research Council Center of Excellence for Carbon Science and Innovation (ARC COE-CSI) UNSW Associate Professor Rakesh Joshi and Nobel Laureate Professor Sir Kostya Novoselov. Prof Joshi is based at the School of Materials Science and Engineering, University of New South Wales (UNSW). Prof Novoselov is based at the National University of Singapore.

A United Nations report estimates that 2.2 billion people lack safely managed drinking water.

How Thorium Could Power Humanity’s Moon Base

Unlock the future of energy! Discover how abundant thorium and advanced Small Modular Reactors (SMRs) could power our world and humanity’s pioneering Moon base, offering a safer, cleaner path to net-zero.

If you liked this video, please show it to a friend who hasn’t heard of us yet! Also, please leave a comment below. Thanks for watching!

🚀 New mind-blowing episodes every week!

Link to Best Telescopes at the website: https://apollo11space.com/best-telesc… website: https://apollo11space.com 🌠 Join our constellation of curious minds: Facebook: / apollo11space11 Pinterest: / tranquilitybase784 Instagram: / apollo11spacechannel X (Twitter): / apollo11space69 Reddit: / orbitingapollo Copyright Title 17, US Code (Sections 107–118 of the copyright law, Act 1976): This website uses all media for the purpose of review and commentary under the terms of fair use. All footage and images used belong to their respective companies. #thorium #materialscience #space.

My website: https://apollo11space.com.

🌠 Join our constellation of curious minds: