Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Controlling electron interference in time with chirped laser pulses

In quantum mechanics, particles such as electrons act like waves and can even interfere with themselves—a striking and counterintuitive feature that defies our classical view of reality. We know this kind of interference happens in space, where different paths can overlap and combine, but what if we could take it further? What if we could control quantum interference in time, where electrons created at different moments interfere?

In a new study published in Physical Review Letters, a team of researchers developed a novel technique—chirped laser-assisted dynamic interference—to manipulate temporal during photoionization.

By using extreme-ultraviolet pulses with time-varying central frequency, in combination with intense infrared laser fields, they guided electron motion with unprecedented precision.

Quantum scars boost electron transport and drive the development of microchips

Quantum physics often reveals phenomena that defy common sense. A new theory of quantum scarring deepens our understanding of the connection between the quantum world and classical mechanics, sheds light on earlier findings and marks a step forward toward future technological applications.

Quantum mechanics describes the behavior of matter and energy at microscopic scales, where randomness seems to prevail. Yet even within seemingly chaotic systems, hidden order may lie beneath the surface. Quantum scars are one such example: they are regions where prefer to travel along specific pathways instead of spreading out uniformly.

Researchers at Tampere University and Harvard University previously demonstrated in their article published in “Quantum Lissajous Scars” that quantum scars can form strong, distinctive patterns in nanostructures, and that their shapes can even be controlled. Now, the Quantum Control and Dynamics research group at Tampere University’s Physics Unit is taking these findings further. In their new article, the researchers report that quantum scars significantly enhance electron transport in open quantum dots connected to electrodes. The work is published in the journal Physical Review B.

The Solar Wind Is Hiding Strange Particles That Could Rewrite Space Weather

Data may challenge and reshape current models of solar wind evolution.

A recent study led by Dr. Michael Starkey of the Southwest Research Institute has delivered the first observational evidence from the Magnetospheric Multiscale (MMS) Mission of pickup ions (PUIs) and their related wave activity in the solar wind near Earth. NASA launched the MMS mission in 2015, deploying four spacecraft to study Earth’s magnetosphere, the magnetic field that protects the planet from harmful solar and cosmic radiation.

Formation and behavior of PUIs.

Tiny Multicolor Metalenses Could Revolutionize Drone and Phone Cameras

Engineers created multi-layer metalenses that focus several wavelengths. The design could revolutionize portable optical devices. Researchers have introduced a new way to create multicolored lenses that could pave the way for a generation of compact, low-cost, and high-performance optics for port

New Lensless Camera Sees in 3D Using Ancient Pinhole Tech

A lens-free system produces sharp mid-infrared images even in low light and over long distances, creating new opportunities for improved night vision, industrial inspections, and environmental monitoring. Drawing on the centuries-old principle of pinhole imaging, researchers have developed a high

Fortra Releases Critical Patch for CVSS 10.0 GoAnywhere MFT Vulnerability

“A deserialization vulnerability in the License Servlet of Fortra’s GoAnywhere MFT allows an actor with a validly forged license response signature to deserialize an arbitrary actor-controlled object, possibly leading to command injection,” Fortra said in an advisory released Thursday.

The company also noted that successful exploitation of the vulnerability is dependent on the system being publicly accessible over the internet.

Users are advised to update to the patched release – version 7.8.4, or the Sustain Release 7.6.3 – to safeguard against potential threats. If immediate patching is not possible, it’s advisable to ensure that access to the GoAnywhere Admin Console is not open to the public.

/* */