Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

New algorithms enable efficient machine learning with symmetric data

MIT researchers designed a computationally efficient algorithm for machine learning with symmetric data that also requires fewer data for training than conventional approaches. Their work could inform the design of faster, more accurate machine-learning models for tasks like discovering new drugs or identifying astronomical phenomena.

U of I lab to receive $15M for AI tool development, molecular innovation

CHAMPAIGN-URBANA, Ill. (WCIA) — The U.S. National Science Foundation has awarded a University of Illinois lab $15 million. The money will support the development of AI tools, to help scientists quickly and efficiently synthesize molecules for medicine, energy, industry and more.

The money will be going to the Molecule Maker Lab Institute (MMLI) — which is based on the U of I’s campus, in partnership between Pennsylvania State University and the Georgia Institute of Technology. U of I chemical and biomolecular engineering professor Huimin Zhao directs the lab.

Zhao said functional molecules like drugs chemicals are important in today’s society, but the process of discovering new molecules is slow and expensive. He believes AI can change that.

The Winners of the Project Hyperion Generation Ship Competition have been Announced!

On November 1st, 2024, Project Hyperion — an international, interdisciplinary team of architects, engineers, anthropologists, and urban planners — launched a design competition for crewed interstellar travel. The event was hosted by the Initiative for Interstellar Studies (i4is), a UK-based non-profit organization dedicated to the robotic and human exploration of exoplanets around nearby stars, and eventually settlement. With a prize purse of $10,000, competitors were tasked with producing concepts for a Generation Ship (aka. Worldships) using current technologies and those that could be realized in the near future.

On July 23rd, 2025, the organization announced the top three competition winners, which were selected from hundreds of ideas submitted by teams worldwide. The winning entries were selected based on how they met all the competition criteria, provided a depth of detail, and integrated the design aspects of architecture, engineering, and social sciences. In short, the top three prizes were awarded to proposals that would allow a society to sustain itself and flourish in a highly resource-constrained environment as they made a centuries-long journey to another habitable planet.

The challenges and hazards of space exploration are well-known and well-documented, ranging from long-duration transits, exposure to radiation, the amount of supplies needed, and the dangers of being cooped up inside a pressurized ship in close quarters with other crew members. As the saying goes, “space is hard,” but interstellar travel is especially difficult and dangerous. Not only are resupply missions not an option for missions venturing so far beyond Earth, but the time and energy it would take for spacecraft to travel to even the nearest star is prohibitive.

Scientists Use Engineered Cells to Combat Aging in Primates

As we age, our bodies gradually lose their ability to repair and regenerate. Stem cells diminish, making it increasingly difficult for tissues to heal and maintain balance. This reduction in stem cells is a hallmark of aging and a key driver of age-related diseases. Scientists have long debated whether this decline is the root cause of aging or a side effect. Efforts to use stem cell transplants to reverse aging have faced many challenges, such as ensuring the cells survive and integrate into the body without causing serious side effects, like tumors.

In a recent study published in Cell, researchers from the Chinese Academy of Sciences and Capital Medical University introduced a new type of human stem cell called senescence-resistant mesenchymal progenitor cells (SRCs) by reprogramming the genetic pathways associated with longevity. These cells, which resist aging and stress without developing tumors, were tested on elderly crab-eating macaques, which share physiological similarities with humans in their 60s and 70s.

The research team conducted a 44-week experiment on these macaques. The macaques received biweekly intravenous injections of SRCs, with a dosage of 2×106 cells per kilogram of body weight. The researchers found no adverse effects among the macaques. Detailed assessments confirmed that the transplanted cells did not cause tissue damage or tumors.

The researchers discovered that SRCs triggered a multi-system rejuvenation, reversing key markers of aging across 10 major physiological systems and 61 different tissue types. The treated macaques exhibited improved cognitive function, and tissue analyses indicated a reduction in age-related degenerative conditions such as brain atrophy, osteoporosis, fibrosis, and lipid buildup. 👍

/* */