Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

AI creates the first 100-billion-star Milky Way simulation

Researchers combined deep learning with high-resolution physics to create the first Milky Way model that tracks over 100 billion stars individually. Their AI learned how gas behaves after supernovae, removing one of the biggest computational bottlenecks in galactic modeling. The result is a simulation hundreds of times faster than current methods.

The ‘Great Unified Microscope’ can see both micro and nanoscale structures

Researchers at the University of Tokyo have built a microscope that can detect a signal over an intensity range 14 times wider than conventional microscopes. Moreover, the observations are made label-free, that is, without the use of additional dyes.

This means the method is gentle on cells and adequate for long-term observations, holding potential for testing and quality control applications in the pharmaceutical and biotechnology industries. The findings are published in the journal Nature Communications.

Microscopes have played a pivotal role in the development of science since the 16th century. However, progress has required not only more sensitive and accurate equipment and analysis, but also more specialized ones. Therefore, modern, cutting-edge techniques have had to straddle trade-offs.

Scientists Make “Dark” Light States Shine, Unlocking New Quantum Tech

A breakthrough in manipulating dark excitons could pave the way for next-generation quantum communication systems and ultra-compact photonic devices. A research group from the City University of New York and the University of Texas at Austin has developed a method to illuminate light states that

World’s Leading Scientific Supercomputing Centers Adopt NVIDIA NVQLink to Integrate Grace Blackwell Platform With Quantum Processors

NVIDIA today announced that the world’s leading scientific computing centers are adopting NVIDIA® NVQLink™, a first-of-its-kind, universal interconnect for linking quantum processors with state-of-the-art accelerated computing.

Watch: HydroGNSS, IRIDE and Greek mission satellites launch

The European Space Agency’s HydroGNSS, a twin-satellite mission to gather data on Earth’s water cycle, is scheduled to launch on 19 November at 19:18 CET (10:18 Pacific Time). Live coverage of the launch will be shown on ESA Web TV.

The live coverage will start at 19:01 CET (10:01 Pacific Time). Launch is from the Vandenberg Space Force Base with SpaceX on Falcon 9.

Please note: launch times are subject to change at short notice. This page will be updated as soon as information becomes available, so please check back or bookmark the article.

Qualia as Structured Silence: Colour Opponency via Dual-Regime Refusal

By: Alastair Waterman https://www.facebook.com/share/p/1N1TBvEKuF/

Why does red feel exactly like red, green exactly like green, and why can these two experiences never, ever swap places?

Most current theories of consciousness have no real answer. They explain how the brain detects wavelength, but not why one neural pattern feels “red” and its literal opponent feels “green”

Refusal-Driven Dimensionality Reduction Theory (RDRT) offers the first direct mechanism.

Colour vision is opponent at every level: red and green are mutually exclusive from retina → LGN → V1 → V4 → inferotemporal cortex.

This hard-wired mutual exclusion is a multi-level structural refusal.

The claim: The specific feeling of redness is not the spikes that are transmitted.

It is the precise, reproducible shape of what is refused transmission — a stable ~55–65-event “hole” carved into each gamma cycle in the anterior cingulate cortex and self-monitoring networks.

Root canal treatment could significantly lower blood sugar levels, study suggests

“Our oral health is connected to our general health,” said Dr Sadia Niazi, a senior clinical lecturer in endodontology at King’s College London. “We should never look at our teeth or dental disease as a separate entity.”

Root canal treatment is one of the most common – and perhaps most feared – dental procedures, though much of the anxiety derives from myths and misconceptions that hark back to the days of poor anaesthetics. The treatment is performed to treat infection or damage to the tooth’s pulp, the soft inner tissue of a tooth that contains nerves, blood vessels and connective tissue.

Read More


If a looming root canal treatment is putting a dampener on the week, take heart: having the procedure can drive health benefits that are felt throughout the body, according to research.

Patients who were successfully treated for root canal infections saw their blood sugar levels fall significantly over two years, suggesting that ridding the body of the problematic bacteria could help protect against type 2 diabetes.

Dentists also saw improvements in patients’ blood cholesterol and fatty acid levels, both of which are associated with heart health. Yet more benefits were seen around inflammation, a driver for cardiovascular disease and other chronic conditions.

A Common Diabetes Drug Is Linked to ‘Exceptional Longevity’ in Women

Not only can the drug metformin help to effectively manage type 2 diabetes, but it may also give older women a better chance of living to the grand old age of 90, according to recent research – thanks, it seems, to a variety of anti-aging effects.

Scientists in the US and Germany used data from a long-term US study of postmenopausal women. Records on a total of 438 people were picked out – half of whom took metformin to treat diabetes, and half who took a different diabetes drug, called sulfonylurea.

While there are some caveats and asterisks to the study, those in the metformin group were calculated to have a 30 percent lower risk of dying before the age of 90 than those in the sulfonylurea group.

From artificial organs to advanced batteries: A breakthrough 3D-printable polymer

A new type of 3D-printable material that gets along with the body’s immune system, pioneered by a University of Virginia research team, could lead to safer medical technology for organ transplants and drug delivery systems. It could also improve battery technologies.

The breakthrough is the subject of a new article published in the journal Advanced Materials, based on work done by the University of Virginia’s Soft Biomatter Laboratory, led by Liheng Cai, an associate professor of materials science and engineering and chemical engineering. The paper’s first author is Baiqiang Huang, a Ph.D. student in the School of Engineering and Applied Science.

Their research shows a way to change the properties of polyethylene glycol to make stretchable networks. PEG, as it’s known, is a material already used in many biomedical technologies such as tissue engineering, but the way PEG networks are currently produced—created in water by crosslinking linear PEG polymers, with the water removed afterward—leaves a brittle, crystallized structure that can’t stretch without losing its integrity.

/* */